Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Cỏ dại
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
 Mashiro Shiina
9 tháng 12 2018 lúc 8:49

\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(x+y\right)}+\dfrac{z^2-xy}{\left(x+z\right)\left(z+y\right)}\)

\(=\dfrac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\left\{{}\begin{matrix}\left(x^2-yz\right)\left(y+z\right)=x^2y+x^2z-y^2z-yz^2\\\left(y^2-xz\right)\left(x+z\right)=y^2x+y^2z-x^2z-xz^2\\\left(z^2-xy\right)\left(x+y\right)=z^2x+z^2y-x^2y-xy^2\end{matrix}\right.\)

Đa thức trên bằng 0

\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{-x^2}{\left(x-y\right)\left(z-x\right)}+\dfrac{-y^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{-z^2}{\left(z-x\right)\left(y-z\right)}\)

\(=\dfrac{-x^2\left(y-z\right)-y^2\left(z-x\right)-z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

Xét: \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\)

\(\)\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-xz-yz+z^2\right)\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Thêm dấu - đằng trc nữa suy ra bt có giá trị bằng 1 :P

Nguyen Thi Ngoc Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2022 lúc 13:33

a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)

Trần Thị Hảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2022 lúc 13:59

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

Huyền Nguyễn
Xem chi tiết
Hà Nhung Huyền Trang
7 tháng 7 2023 lúc 8:59

Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)

Phân tích vế phải ta được6(x2 + y2 + z2 − (xy + yz + zx)

VT = VP nên VP - VT=0

 4(x2 + y2 + z2 − (xy + yz + zx)) = 0

2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0

→2((x − y)2 + (y − z)2 + (z − x)2) = 0

→(x − y)2 + (y − z)2 + (z − x)2 = 0

→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0

→x = y = z

blinkwannable
Xem chi tiết
trần thảo lê
20 tháng 12 2017 lúc 19:38

a,

\(-\dfrac{x}{\left(x-y\right)\left(z-x\right)}-\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(z-x\right)\left(y-z\right)}\)

\(\dfrac{-x\left(y-z\right)-y\left(z-x\right)-z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(\dfrac{-xy+xz-yz+xy-zx+yz}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

= 0

Nguyễn Thanh Vân
Xem chi tiết
hattori heiji
21 tháng 11 2017 lúc 22:01

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

dinh huong
Xem chi tiết