cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Cho x,y,z là các số thực không âm thỏa mãn điều kiện \(x\ge y\ge z\).Chứng minh rằng:
\(\frac{xy+yz+zx}{x^2+xy+y^2}\ge\frac{\left(x+z\right)\left(y+z\right)}{\left(x+z\right)^2+\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
đặt \(A=\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{zx}}{y+3\sqrt{zx}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}\)
\(\Rightarrow1-3A=\frac{x}{x+3\sqrt{yz}}+\frac{y}{y+3\sqrt{zx}}+\frac{z}{z+3\sqrt{xy}}\)
\(\ge\frac{x}{x+\frac{3}{2}\left(y+z\right)}+\frac{y}{y+\frac{3}{2}\left(z+x\right)}+\frac{z}{z+\frac{3}{2}\left(x+y\right)}\)
\(=\frac{2x}{2x+3\left(y+z\right)}+\frac{2y}{2y+3\left(z+x\right)}+\frac{2z}{2z+3\left(x+y\right)}\)
\(=\frac{2x^2}{2x^2+3xy+3xz}+\frac{2y^2}{2y^2+3yz+3xy}+\frac{2z^2}{2z^2+3zx+3yz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+6\left(xy+yz+zx\right)}=\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{2\left(x+y+z\right)^2}{\frac{8}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
\(\Rightarrow1-3A\ge\frac{3}{4}\Rightarrow A\le\frac{3}{4}\left(Q.E.D\right)\)
ta có:
(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)-abc\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+x\right)\left(y+z\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{9}{4\left(xy+yz+zx\right)}=\frac{9}{4}\)
cho x,y,z là các số dương thỏa mãn \(xyz=\frac{1}{2}\)CMR : \(\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(x+z\right)}+\frac{xy}{z^2\left(y+x\right)}\ge xy+yz+zx\)
Cho các số thực dương x,y,z thỏa mãn xyz = 8. Tìm giá trị nhỏ nhất của \(A=\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y^3}{\left(z+x\right)\left(z+2x\right)}+\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\)
Cho x,y,z>0 và xyz=1. Tìm GTNN của Q = \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(x+z\right)}\)