1) \(3ax^2+3bx^2+ax+bx+5a+5b\)
2) \(ax-bx-2cx-2a+2b+4c\)
Phân tích thành nhân tử (mọi người làm chi tiết ạ)
\(2ax-bx+3cx-2a+b-3c\)
\(ax-bx-2cx-2a+2b+4c\)
\(3ax^2 +3bx^2 +ax+bx+5a+5b\)
\(ax^2 -bx^2 -2ax+2bx-3a+3b\)
\(2ax-bx+3cx-2a+b-3c\\ =x\left(2a-b+3c\right)-\left(2a-b+3c\right)\\ =\left(x-1\right)\left(2a-b+3c\right)\)
\(ax-bx-2cx-2a+2b+4c\\ =x\left(a-b-2c\right)-2\left(a-b-2c\right)\\ =\left(x-2\right)\left(a-b-2c\right)\)
\(3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\)
\(ax^2-bx^2-2ax+2bx-3a+3b\\ =x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a+b\right)\\ =\left(x^2-2x-3\right)\left(a+b\right)\\ =\left(x+1\right)\left(x-3\right)\left(a+b\right)\)
Phân tích đa thức thành nhân tử:
a)A=4acx+4bcx+4x+4bx
b)B=ax-bx+cx-3a+3b-3c
c)C=2ax-bx+3cx-2a+b-3c
d)D=ax-bx-2cx-2a+2b+4c
e)E=3ax2+3bx2+ax+bx+5a+5b
f)F=ax2-bx2-2ax+2bx-3a+3b
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
1, 6a^2y-3aby+4a^2x-2abx
2, 5x^2y-5xy^2-a^2x+a^2y
3, 2x^2-6xy+5x-15y
4, ax^2-5by-5a^2y+2bx
5, 2ax^3+6ax^2+6ax+18a
6, ax^2-bx^2y-ã+bx+2a-2b
7,3ax^2+3bx^2+ã+bx+5a=5b
8, ax^2-bx^2-2ax+2bx-3a+3b
9, 2ax^2-bx^2-2ax+bx-3a+3b
10, 2ax^2-5x^2-ax+bx+4a-2b
11,ax^2-5x^2-ax+5x+a-5
sos phân tích thành nhân tử :3ax^2++3bx^2+ã+bx+5a+5b
3a\(x\)2 + 3b\(x\)2 + a\(x\) + b\(x\) + 5a + 5b
= (3a\(x^2\) + 3b\(x^2\)) + (a\(x\) + b\(x\)) + (5a + 5b)
= 3\(x^2\)(a + b) + \(x\)(a +b) + 5(a + b)
= (a + b)( 3\(x^2\) + \(x\) + 5)
= (a + b)(3\(x^2\) + \(x\) + 5)2
Phân tích đa thức sau bằng phương pháp nhóm hạng tử
1) x ( a - b ) + a - b ; 2) x - y - a( x - y ) ; 3) a( x + y ) - x - y ; 4) x( a - b ) - a + b ; 5) x\(^2\) + xy - 2x - 2y
6) 10ax - 5ay + 2x - y ; 7) 2a\(^{^2}\) x - 5by - 5a\(^2\) y + 2bx ; 8) 2ax\(^2\)- bx\(^2\) - 2ax + bx + 4a - 2b ; 9) 2ax - bx + 3cx - 2a + b - 3c
10) ax - bx - 2cx - 2a + 2b + 4c
1, x(a-b)+a-b 2, x-y-a(x-y) 3, a(x+y)-x-y 4, x(a-b)-a+b 5, x2+xy-2x-2y 6, 10ax-5ay+2x-y
= x(a-b)+(a-b) =(x-y)-a(x-y) =a(x+y)-(x+y) =x(a-b)-(a-b) =(x2+xy)-(2x+2y) =(10ax+2x)-(5ay+y)
=(a-b)(x+1) =(x-y)(1-a) =(x+y)(a-1) =(a-b)(x-1) =x(x+y)-2(x+y) =2x(5a+1)-y(5a+1)
=(x+y)(x-2) =(5a+1)(2x-y)
7, 2a2x-5by-5a2y+2bx 8, 2ax2-bx2-2ax+bx+4a-2b 9, 2ax-bx+3cx-2a+b-3c 10, ax-bx-2cx-2a+2b+4c
=(2a2x+2bx)-(5by+5a2y) =(2ax2-bx2)-(2ax-bx)+(4a-2b) =(2ax-2a)-(bx-b)+(3cx-3c) =(ax-2a)-(bx-2b)-(2cx-4c)
=2x(a2+b)-5y(b+a2) =x2(2a-b)-x(2a-b)+2(2a-b) =2a(x-1)-b(x-1)+3c(x-1) =a(x-2)-b(x-2)-2c(x-2)
=(a2+b)(2x-5y) =(2a-b)(x2-x+2) =(x-1)(2a-b+3c) =(x-2)(a-b-2c)
phân tích đa thức thành nhân tử:
ax2-5x2-ax+5x+a-5
3ax2+3bx2+ax+by+5a+5b
ax2-5x2-ax+5x+a-5
=x^2(a-5)-x(a-5)+(a-5)
=(a-5)(x^2-x+1)
cậu ghi sai đề rồi phải là
3ax2+3bx2+ax+bx+5a+5b
=3x^2(a+b)+x(a+b)+5(a+b)
=(a+b)(3x^2+x+5)
Bài : Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
d)ax2 - 5x2 - ax + 5x + a -5
e) ax - bx - 2cx - 2a + 2b + 4c
f) ( 4x2 - 7x - 50)2 - 16x4 - 56x3 - 49x2
d) \(ax^2-5x^2-ax+5x+a-5=\left(ax^2-ax+a\right)+\left(-5x^2+5x-5\right)\)
\(=a\left(x^2-x+1\right)-5\left(x^2-x+1\right)=\left(a-5\right)\left(x^2-x+1\right)\)
e) \(ax-bx-2cx-2a+2b+4c=x\left(a-b-2c\right)-2\left(a-b-2c\right)\)
\(=\left(x-2\right)\left(a-b-2c\right)\)
ax^2 - 5x^2-ax+5x+a-5
=x^2(a-5) -x(a-5)+(a-5)
=(a-5)(x^2-x+1)
ax-bx-2cx-2a+2b+4c
=x(a-b-c) -2(a-b-c)
=(x-2)(a-b-c)
Nhập ĐT nên k tiện gõ công thức, thông cảm
d, \(ax^2-5x^2-ax+5x+a-5\)
\(=\left(ax^2-ax+a\right)-\left(5x^2-5x+5\right)\)
\(=a\left(x^2-x+1\right)-5\left(x^2-x+1\right)\)
\(=\left(a-5\right)\left(x^2-x+1\right)\)
e, \(ax-bx-2cx-2a+2b+4c\)
\(=a\left(x-2\right)-b\left(x-2\right)-2c\left(x-2\right)\)
\(=\left(x-2\right)\left(a-b-2c\right)\)
f, \(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)
\(=\left(4x^2-7x-50\right)\left(4x^2-7x-50\right)-16x^4-56x^3-49x^2\)
\(=16x^4-28x^3-200x^2-28x^3+49x^2+350x-200x^2+350x+2500-16x^4-56x^3-49x^2\)
\(=-112x^3-400x^2+700x+2500\)
\(=-\left(112x^2+400x^2-700x-2500\right)\)
\(=-\left(112x^3-280x^2+680x^2-1700x+1000x-2500\right)\)
\(=-\left[112x^2\left(x-2,5\right)+680x\left(x-2,5\right)+1000\left(x-2,5\right)\right]\)
\(=-\left[\left(x-2,5\right)\left(112x^2+680x+1000\right)\right]\)
\(=-\left[\left(x-2,5\right)\left(112x^2+280x+400x+1000\right)\right]\)
\(=-\left\{\left(x-2,5\right)\left[112x\left(x+2,5\right)+400\left(x+2,5\right)\right]\right\}\)
\(=-\left[\left(x-2,5\right)\left(x+2,5\right)\left(112x+400\right)\right]\)
\(=-\left[16\left(x-2,5\right)\left(x+2,5\right)\left(7x+25\right)\right]\)
Chúc bạn học tốt!!!
Bài : Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
e) ax - bx - 2cx - 2a + 2b + 4c
\(ax-bx-2cx-2a+2b+4c\)
\(=a\left(x-2\right)-b\left(x-2\right)-2x\left(x-2\right)\)
\(=\left(x-2\right)\left(a-b-2x\right)\)
Vậy.............
Chúc bạn học tốt!!!
Phân tích da thức thành nhân tử :
a ) 6a^2y - 3aby +4a^2x - 2abx
b ) ax -bx -2cx -2a +2b +4c
c ) x^9 +1
d ) 25x^2 - 20xy +4y^2
e )x^2 +2xy +y^2 - 25
a ) \(6a^2y-3aby+4a^2x-2abx\)
\(=3ay\left(2a-b\right)+2ax\left(2a-b\right)\)
\(=\left(3ay+2ax\right)\left(2a-b\right)\)
\(=a\left(3y+2x\right)\left(2a-b\right)\)
b ) \(ax-bx-2cx-2a+2b+4c\)
\(=a\left(x-2\right)-b\left(x-2\right)-2c\left(x-2\right)\)
\(=\left(a-b-2c\right)\left(x-2\right)\)
c ) \(x^9+1\)
\(=\left(x^3\right)^3+1\)
\(=\left(x^3+1\right)\left(x^6-x^2+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
d ) \(25x^2-20xy+4y^2\)
\(=\left(5x-2y\right)^2\)
e ) \(x^2+2xy+y^2-25\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)