chứng tỏ tổng sau nhỏ hơn 1:A=3/1x4+3/4x7+3/7x10+.....+3/40x43
Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1
Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1
ĐPM : S < 1
S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
=>S<1
S = 3/1.4 + 3/4.7 +....+ 3/43.46
S = 1 - 1/4 + 1/4 - 1/7 +.....+ 1/43 - 1/46
S = 1 - 1/46
S = 45/46 < 1
=> S < 1 (đpcm)
cho S = 3/1x4 + 3/4x7 + 3/7x10+ ...+3/40x43 + 3/43x46.Hãy chứng minh S<1
= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
= 1 - 1/46 = 45/46 < 1
CHO: S= 3/1x4 + 3/4x7 + 3/7x10 +......+ 3/n(n+3)
CHỨNG MINH RẰNG S bé hơn 1
Ta có:
S=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
S=\(1-\frac{1}{n+3}\)
=>S<1
Vậy S<1
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
Sory mình bấm bị lỗi
Bài giải
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{n\left(n+3\right)}\)
\(S=3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{n\left(n+3\right)}\right)\)
\(S=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\right)\)
\(S=3\left(1-\frac{1}{n+3}\right)\)
\(S=3\left(\frac{n+3}{n+3}-\frac{1}{n+3}\right)=3\cdot\frac{n+2}{n+3}=\frac{3n+6}{n+3}>1\)
Đề sai à bạn ?
a)Cho B=1/5+1/6+...+1/19.Hãy chứng tỏ rằng B >1
b)Tính nhanh giá trị biểu thức M=3/5+3/7+3/11 trên 4/5+4/7-4/11
c)Chứng tỏ rằng S<1 biết S=3/1x4+3/4x7+3x7x10+...+3/40x43+3/43x46
Tính tổng : S= 3/1x4 + 3/4x7 + 3/7x10 + ........... + 3/37x40
=1-1/4+1/4-1/7+1/7-...+1/37-1/40
=1-1/40=39/40
Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy tính S
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}=\frac{45}{46}\)
Trả lời:
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=\frac{1}{1}-\frac{1}{46}\)
\(=\frac{46}{46}-\frac{1}{46}\)
\(=\frac{45}{46}\)
Tính nhanh :
A=\(\frac{3}{1x4}\)+ \(\frac{3}{4x7}\)+ \(\frac{3}{7x10}\)+ ...... + \(\frac{3}{40x43}\)+ \(\frac{3}{43x46}\)4
Ai cmt đầu tiên mình sẽ like nha
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(\Leftrightarrow A=1-\frac{1}{46}\)
\(\Leftrightarrow A=\frac{45}{46}\)
Các bạn ơi. Chỗ cuối ko có số 4 đâu nha. Mình viết lộn
A = \(\frac{3}{1.4}\)\(+\)\(\frac{3}{4.7}\)\(+\)\(...\)\(+\)\(\frac{3}{43.46}\)
= 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\) - \(\frac{1}{7}\)+ ...+\(\frac{1}{43}\)- \(\frac{1}{46}\)
= 1 - \(\frac{1}{46}\)
= \(\frac{45}{46}\)
1. \(\frac{3}{1X4}+\frac{3}{4X7}+\frac{3}{7X10}+.........+\frac{3}{40X43}\)
2. \(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+........+\frac{2}{90}\)
Giúp mk nha ai lm nhanh mk tick cho
Cái dâu X là dấu nhân nha
1. \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}\)
\(=\frac{42}{43}\)
2. Đặt \(A=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(1-\frac{1}{10}\right)\)
\(=2.\frac{9}{10}\)
\(=\frac{9}{5}\)
Ủng hộ mk nha !!! ^_^
1) 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/40×43
= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/40 - 1/43
= 1 - 1/43
= 42/43
2) 2/2 + 2/6 + 2/12 + ... + 2/90
= 2 × (1/2 + 1/6 + 1/12 + ... + 1/90)
= 2 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)
= 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)
= 2 × (1 - 1/10)
= 2 × 9/10
= 9/5
1) 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/40×43
= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/40 - 1/43
= 1 - 1/43
= 42/43
2) 2/2 + 2/6 + 2/12 + ... + 2/90
= 2 × (1/2 + 1/6 + 1/12 + ... + 1/90)
= 2 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)
= 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)
= 2 × (1 - 1/10)
= 2 × 9/10
= 9/5
A=3^2/1x4+3^2/4x7+3^2/7x10+...+3^2/97x100
\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)
\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\times\left(1-\frac{1}{100}\right)\)
\(A=3\times\frac{99}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)