Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Thang Viên (bánh tr...
Xem chi tiết
Nguyễn Cảnh Kyf
Xem chi tiết
Bui Huyen
1 tháng 3 2020 lúc 20:42

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

Khách vãng lai đã xóa
vũ tiền châu
Xem chi tiết
Lầy Văn Lội
15 tháng 10 2017 lúc 22:46

\(HPT\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2=3+\frac{1}{x}+\frac{1}{x^2}\\..\\...\end{cases}}\)

đến đây cộng vế 3 PT ta sẽ tính được \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) khi đó thay vào PT đầu giải

Vũ Phương Mai
15 tháng 10 2017 lúc 22:55

Xét (x,y,z)=(0,0,m),(0,n,0),(p,0,0) là nghiệm của hệ(m,n,p\(\in\)R)

Xét xyz\(\ne\)0

hpt\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2\\\left(\frac{1}{z}+\frac{1}{x}\right)^2\\\left(\frac{1}{x}+\frac{1}{y}\right)^2\end{cases}}\)

Đặt\(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)

hệ tt

\(\hept{\begin{cases}a^2+a+3=\left(b+c\right)^2\\b^2+b+4=\left(c+a^2\right)\\c^2+c+5=\left(a+b\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b+c+\frac{1}{2}\right)\left(b+c-a-\frac{1}{2}\right)=\frac{11}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(c+a-b-\frac{1}{2}\right)=\frac{15}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(a+b-c-\frac{1}{2}\right)=\frac{19}{4}\end{cases}}}\)

đặt rồi tự giải tiếp

vũ tiền châu
15 tháng 10 2017 lúc 23:09

uây chị P mai nhà ta có khác 

Thái Bình Nguyễn
Xem chi tiết
Trần Hữu Ngọc Minh
27 tháng 11 2017 lúc 12:52

Ta có:\(y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Leftrightarrow y\le x\)

Tương tự ta có:\(z\le y,y\le x\)

Dấu = xảy ra khi \(x=y=z\)

Đến đây dễ rồi

bchbdhdn
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2023 lúc 0:03

\(x^2+2z+y^2-2x+z^2-2y+3=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y;z\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)

Nguyễn Mai
Xem chi tiết
tiểu an Phạm
Xem chi tiết
Thiên An
Xem chi tiết
alibaba nguyễn
18 tháng 2 2017 lúc 8:18

Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ

Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Cộng 3 phương trình vế theo vế ta được

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)

Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)

Cộng vế theo vế ta được:

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)

Dấu =  xảy ra khi \(x=y=z=1\)

Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)

PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D

Thắng Nguyễn
17 tháng 2 2017 lúc 22:54

nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)

Ngoc An Pham
Xem chi tiết
Đoàn Đức Hà
4 tháng 8 2021 lúc 19:39

\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)

Khách vãng lai đã xóa