Tìm giá trị nguyên của n để bieetr thức sau đạt giá trị nhỏ nhất A= 5n-19/2n-7
Tìm giá trị nguyên của n để biểu thức sau đạt giá trị nhỏ nhất A= (5n-19)/2n-7
1, Tìm số tự nhiên n để phân số: 5n-7/2n-3 có giá trị lớn nhất
2, Cho biểu thức: A=x2+1; B=3-4x
a,Tìm x biết:A+B=0
b, Tìm số nguyên x để 1/A+B có giá trị nguyên
c,Tìm gia trị lớn nhất và nhỏ nhất của biêu thức B/A
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
Tìm các số Z n sao cho
a/ A= 20n + 13 / 4n + 3 có giá trị lớn nhất - nhỏ nhất
b/ B= 6n + 19 / 2n + 3 có giá trị lớn nhất - nhỏ nhất
c/ C= 12 -3n / n - 2 có giá trị lớn nhất - nhỏ nhất
d/ D= 5n + 7 / 2n + 3 có giá trị lớn nhất - nhỏ nhất
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất.
a)B= (7−x)/(x−5)
b) C=(5x−19)/(x−4)
2. Tìm số tự nhiên n để (7n−8)/(2n−3) có giá trị lớn nhất
b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất
=> 1/x-5=-1
=>x-5=-1
=>x=4
Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
cho biểu thức p=2n+5/n+3. tìm số nguyên n để p đạt giá trị nhỏ nhất
-P chỉ có giá trị lớn nhất thôi nhé bạn.
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất.
a)B=\(\frac{7-x}{x-5}\)
b) C=\(\frac{5x-19}{x-4}\)
2. Tìm số tự nhiên n để p/s\(\frac{7n-8}{2n-3}\)có giá trị lớn nhất
tìm các giá trị nguyên của x để biểu thức A=(7-x)/(x-5) đạt giá trị nhỏ nhất
\(\frac{7-x}{x-5}\) = \(\frac{5-x+2}{x-5}\) = \(\frac{-\left(x-5\right)}{x-5}\) + \(\frac{2}{x-5}\) = -1+\(\frac{2}{x-5}\)
=> x-5 \(\in\) Ư(2)
=> X-5 \(\in\) (-1;1;-2;2)
x-5=-1=>x=4
x-5=1 => x=6
x-5=-2 => x=3
x-5=2 => x=7
Vậy các giá trị của x là (4;6;3;7)