Tìm x a) x^3 - 9x = 0
tìm x
a) x^3-9x+7x^2-63=0
b) x^3-6x^2+9x=0
\(x^3-9x+7x^2-63=0\)
\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)
\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)
Vậy ...
x3−9x+7x2−63=0x3−9x+7x2−63=0
⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0
⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0
⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0
⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7
Vậy ...
Tìm x:
a) x3-9x2+27x-27=0
b) x3-25x=0
c)9x2-1=0
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
Tìm x
a) (2x - 3)(x^2 + 2) - 2(x + 1)^3 - 9x^2 = -5
b) 3(x - 2) - x^2 + 4 = 0
c) x^3 - 5x^2 - 10x= -50
d) x^3 + 9x= 6x^2
e) 2x^2 - 5x + 3 = 0
f) x^2 - x - 2= 0
bài 2; tìm x
a, 5x ( x - 1 ) + ( x + 17 ) = 0
b, 3x ( x - 3 ) mũ 2 - 3x ( x + 3 ) mũ 2 = 0
c, 7 - 9x + 2x mũ 2 = 0
d, 7 - 9x + 2x mũ 2 = 0
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
Tìm xEZ, biết
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\in\) {-2023; 2024}
\(A=\frac{x^3-9x}{x^4-x^3+x-1}\). Tìm x để A > 0; < 0; = 0; có nghĩa; vô nghĩa.
tìm x, biết
a) (x+5).9x-4)=0
b) (x-1).(x-3)=0
c) (3-x).(x-3)=0
d) x.(x+1)=0
a) (x+5)(x-4)=0
<=> x+5=0 hoặc x-4=0
<=> x=-5 hoặc x=4
b) (x-1)(x-3)=0
<=> x-1=0 hoặc x-3=0
<=> x=1 hoặc x=3
a) (x+5).(9x-4)=0
=> x+5=0 hoặc 9x-4=0
Nếu x+5=0: x=0-5=-5
Nếu 9x-4=0: 9x=0+4=4
x=4/9
b) (x-1).(x-3)=0
=> x-1=0 hoặc x-3=0
Nếu x-1=0: x=0+1=1
Nếu x-3=0: x=0+3=3
c) (3-x).(x-3)=0
=> 3-x=0 hoặc x-3=0
Nếu 3-x=0: x=3-0=0
Nếu x-3=0: x=0+3=3
d) x.(x+1)=0
=> x=0 hoặc x+1=0
Nếu x+1=0: x=0-1=-1
\(a,\left(x+5\right)\left(9x-4\right)=0\)
<=>\(\orbr{\begin{cases}x+5=0\\9x-4=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-5\\x=\frac{4}{9}\end{cases}}\)
\(b,\left(x-1\right)\left(x-3\right)=0\)
<=>\(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(c,\left(3-x\right)\left(x-3\right)=0\)
<=>\(\orbr{\begin{cases}3-x=0\\x-3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\x=3\end{cases}}\)
\(d,x\left(x+1\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Tìm x , biết :
a) x^3 - 9x = 0
b) x^2 - 5x - 6 = 0
a/ => x(x2 - 9) = 0
=> x(x - 3)(x + 3) = 0
=> x = 0
hoặc x - 3 = 0 => x = 3
hoặc x + 3 = 0 => x = -3
Vậy x = 0 ; x = 3 ;x = -3
b/ => x2 - 6x + x - 6 = 0
=> x(x - 6) + (x - 6) = 0
=> (x + 1)(x - 6) = 0
=> x + 1 = 0 => x = -1
hoặc x - 6 = 0 => x = 6
Vậy x = -1 ; x = 6
a)
x(x^2-9)=0
x(x^2-3^2)=0
x(x-3)(x+3)
b) x^2-6x+x-6=0
x(x-6)+(x-6)=0
(x-6)(x+1)=0
Tìm x biết:
4x3-9x=0
x3+8x=0
-x3+9x=0
a)\(4x^3-9x=0\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy x = 0 hoặc \(x=\frac{3}{2}\)
b) \(x^3+8x=0\Leftrightarrow x\left(x^2+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=-8\left(L\right)\end{cases}}\)
Vậy x = 0
c) \(-x^3+9x=0\Leftrightarrow x\left(-x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x^2+9=0\\x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=9\\x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
Vậy ...