Tìm GTNN của A=\(7+x^2\sqrt{x}+x\)
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Cho số thực x. Tìm GTNN của:
A=\(\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)
\(A=\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)
\(A=\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}\)
\(A=\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}\)
\(A=\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|\)
\(A=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\)
\(A\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=\left|2\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\sqrt{x-2}-1\right)\left(3-\sqrt{x-2}\right)\ge0\)
TH1 : \(\hept{\begin{cases}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le11\end{cases}\Leftrightarrow}3\le x\le11}\)
TH2 : \(\hept{\begin{cases}\sqrt{x-2}-1\le0\\3-\sqrt{x-2}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge11\end{cases}}}\) ( loại )
Vậy GTNN của \(A\) là \(2\) khi \(3\le x\le11\)
Chúc bạn học tốt ~
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Tìm GTNN của biểu thức sau :
\(\sqrt{\text{x-1}\text{-2}\sqrt{\text{x-2}}}-\sqrt{\text{x+7}\text{-6}\sqrt{\text{x-2}}}\)
B=\(\dfrac{\sqrt{x}}{x+\sqrt{x}}\) : \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)với x>0
a) Rút gọn B
b) Tìm các giá trị của x để B= \(\dfrac{2}{7}\)
c) Tìm GTNN của B
a: \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}:\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{x+1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: B=2/7
=>\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{2}{7}\)
=>\(2\left(x+\sqrt{x}+1\right)=7\sqrt{x}\)
=>\(2x+2\sqrt{x}-7\sqrt{x}+2=0\)
=>\(2x-5\sqrt{x}+2=0\)
=>\(\left(2\sqrt{x}-1\right)\cdot\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
Tìm GTNN của A=\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
Tìm GTNN của biểu thức:
A=\(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}\)
\(A=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}\)
\(A\ge\sqrt{\left(x+\dfrac{1}{2}+\dfrac{1}{2}-x\right)^2+\left(\sqrt{7}\right)^2}=2\sqrt{2}\)
\(A_{min}=2\sqrt{2}\) khi \(x+\dfrac{1}{2}=\dfrac{1}{2}-x\Leftrightarrow x=0\)
Bạn cũng có thể bình phương A lên
Các bn giúp mik với ^^
cho A = \(\frac{x}{\sqrt{x}-1}\)
a/ tìm x để A =\(\sqrt{2}+2\)
b/ Tìm GTNN của A
2/ Cho P =\(\frac{\sqrt{x}+7}{\sqrt{x}+2}\)
Tìm x để P thuộc Z
Tìm GTNN của A=\(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)