tìm số dư khi chia biểu thức sau cho 13
A = \(\left(3^0+3^1+3^2+3^3+3^4+...+3^{2011}+3^{2012}\right)\)
\(G\left(x\right)=\left(x^{2011}+3.x^{2016}-1\right)^{2012}khi\left(x+3\right)=0\) Tính giá trị của biểu thức
\(G\left(x\right)=\left(x^{2011}+3.x^{2016}-1\right)^{2012}khi\left(x+3\right)=0\) Tính giá trị của biểu thức
Bài 1: Tính gái trị biểu thức sau:
1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\)
2) \(\dfrac{298}{719}:\left(\dfrac{1}{4}+\dfrac{1}{12}-\dfrac{1}{3}\right)-\dfrac{2011}{2012}\)
3) \(\dfrac{27.18+27.103-120.27}{15.33+33.12}\)
1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)
1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)
cho \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\). hãy tính giá trị biểu thức sau: \(A=f\left(\dfrac{1}{2012}\right)+f\left(\dfrac{2}{2012}\right)+...+f\left(\dfrac{2010}{2012}\right)+f\left(\dfrac{2011}{2012}\right)\)
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Bài 1: Tìm x biết :
a. \(\left|2x+3\right|=5\)
b. \(\left(x+\frac{1}{4}-\frac{1}{3}\right).\left(2+\frac{1}{6}-\frac{1}{4}\right)=\frac{7}{46}\)
c. 2. (2x - 7)2 =18
Bài 2:
a. Cho phân số \(A=\frac{-2011}{n-2010}\left(n\in Z,n\ne2010\right)\)
Tìm n \(\in\) Z để A đạt giá trị lớn nhất
b. Tìm số dư khi chia \(_{11^{11^{11}}}\) cho 30?
Bài 3 :
a. Tính tổng :
\(S=2012+\frac{2012}{1+2}+\frac{2012}{1+2+3}+...+\frac{2012}{1+2+3+...+2011}\)
b. Cho p là số nguyên tố lớn hơn 3.
Chứng minh : ( p + 2009 ).( p + 2011 ) chia hết cho 24
Bài 1:
c/
\(\left(2x-7\right)^2=18:2\)
\(\left(2x-7\right)^2=9=3^2\)
=>\(2x-7=3\)
=>\(2x=10\)
=>\(x=5\)
Bài 1:
|2x+3|=5
=>2x+3=5 hoặc (-5)
Với 2x+3=5=>2x=2
=>x=1
Với 2x+3=-5=>2x=-8
=>x=-4
Bài 3 :
Đặt 2012 ra ngoài làm thừa số chung ta có : \(2012.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+2011}\right)\)
Mẫu của số hạng thứ nhất là : 1 = \(\frac{1.\left(1+1\right)}{2}\)
Mẫu của số hạng thứ 2 là : 1+2 = \(\frac{2.\left(2+1\right)}{2}\)
Mẫu của số hạng thứ 3 là : 1+2+3 = \(\frac{3.\left(3+1\right)}{2}\)
=> Mẫu của số hạng thứ n là : 1+2+3+...+n = \(\frac{n.\left(n+1\right)}{2}\)
=> \(\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}=2.\left(\frac{1}{n\left(n+1\right)}\right)=2.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Ta có: \(2012.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+2011}\right)\)
= \(2012.\left(1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{2011.2012}\right)\)
= \(2012.\left(1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\right)\right)\)
=\(2012.\left(1+2\left(\frac{1}{2}-\frac{1}{2012}\right)\right)=2012.\left(1+\frac{1005}{1006}\right)=2012.\left(\frac{2011}{1006}\right)=2.2011=4022\)
1. Tìm giá trị lớn nhất của biểu thức 7lx-3l-l4x+8l-l2-3xl
2. Cho hàm số f(x) xác định với mọi x \(\varepsilon\)Q. Cho f(a+b) =f(a.b) với mọi a, b và f(2011) = 11. Tìm f(2012)
3.Cho hàm số f thỏa mãn f(1) =1; f(2) = 3; f(n) +f(n+2) = 2f(n+1) với mọi số nguyên dương n. Tính f(1) + f(2) + f(3)+...+f(30)
4. Tính giá trị của biểu thức \(\left(\frac{3}{4}-81\right)\left(\frac{^{3^2}}{5}-81\right)\left(\frac{3}{6}^3-81\right)...\left(\frac{3}{2014}^{2011}-81\right)\)
5. Đa thức P(x) cộng với đa thức Q(x) = \(x^3-2x^2-1\) được đa thức \(^{x^2}\). Tìm hệ số tự do của P(x)
6. Cho a, b, c là các số thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-a+c}{2a-3}=\frac{2}{3}\). Tính \(\frac{\left(5b+4a\right)^5}{\left(5b+4a\right)^2\left(a+3c\right)^3}\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Cho đa thức f(x ) bậc 3, đa thức f(x) chia x-1 dư 2011, chia x-2 dư 2012
Tìm dư khi chia f(x) cho (x-1)(x-2)
1)Tìm 3 chữ số tận cùng của \(1^3+2^3+....+\left(2011^{2017}\right)^3\)
2)Tìm dư khi chia \(1^{2016}+2^{2016}+....+2016^{2016}\) cho 13
bài 1 : ko tính giá trị cụ thể hayc so sánh hai biểu thức
a ) C = 2010 . 2012 và D = 2011 . 2011
bài 2 : Chia một số cho 60 thì được số dư là 37 . Nếu chia số đó cho 15 thì được số dư là bao nhiêu ?
bài 3 : tìm giá trị nhỏ nhất của biểu thức M = 2012 - 2011 : ( 2012 - x ) với x thuộc N
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011