giải pt
a> x^2+y^2+2x-4y+5=0
b> x^2+4y^2-x-4y+5/4=0
Tìm giá trị của x,y biết :
a, x2 + y2 + 2x - 4y +5 = 0
b, x2 + 4y2 - x + 4y + 5/4 = 0
a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
Tìm x,y
a,\(x^2+y^2+2x-4y+5=0\)
b, \(x^2+4y^2-x+4y+\frac{5}{4}=0\)
Áp dụng \(A^2+B^2=0\Leftrightarrow th1:A=0;th2B=0\)
a) Ta có \(x^2+y^2+2x-4y+5=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2=0\)
<=> x=-1;y=2
b)Ta có:\(x^2+4y^2-x+4y+\frac{5}{4}=0\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+1\right)=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)
<=> x=1/2 ;y=-1/2
a, \(x^2+y^2+2x-4y+5=0\Rightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0.\)
\(\left(x+1\right)^2+\left(y-2\right)^2=0\)
\(\Rightarrow x+1=0\)và \(y-2=0\)
\(\left(+\right)x+1=0\Rightarrow x=-1\)
\(\left(+\right)y-2=0\Rightarrow y=2\)
Vậy x=-1 ; y=2
b, \(x^2+4y^2-x+4y+\frac{5}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+\frac{4}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\) và \(2y+1=0\)
\(\left(+\right)x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(\left(+\right)2y+1=0\Rightarrow2y=-1\Rightarrow y=-\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-\frac{1}{2}\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
b.
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)
\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)
\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)
Thế vào \(2x^2+y^2-2xy=1\) ...
Với \(x=\dfrac{y^2-1}{4y}\) ta được:
\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)
\(\Leftrightarrow5y^4-6y^2+1=0\)
Tìm x,y:
a)x2-2x+5-y2-4y=0
b) 4x2+y22-20x-2y+26=0
c)9x2+4y2+4y-12x+5=0
b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
Giải hệ \(\left\{{}\begin{matrix}x^2y+2x^2+3y-15=0\\x^4+y^2-2x^2-4y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2y+4x^2+6y-30=0\\x^4+y^2-2x^2-4y-5=0\end{matrix}\right.\)
\(\Rightarrow x^4+2x^2y+y^2+2x^2+2y-35=0\)
\(\Rightarrow\left(x^2+y+1\right)^2-36=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+y+1=6\\x^2+y+1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=5-y\\x^2=-7-y\end{matrix}\right.\)
Thế vào pt đầu ...
Giải hệ \(\left\{{}\begin{matrix}x^2y+2x^2+3y-15=0\\x^4+y^2-2x^2-4y-5=0\end{matrix}\right.\)
I : Tìm x , y
a) x^2+y^2-2x+4y+5=0
b) 4x^2+y^2-4x-6x+10=0
c) 5x^2-4xy+y^2-4x+4=0
d)2x^2-4xy+4y^2-10x+25=0
help me
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
1. Đg tròn x^2 + y^2 -1=0 tiếp xúc đg thẳng nào trong các đg thẳng dưới đây
A. 3x -4y +5=0
B. x +y +1=0
C. x +y =0
D. 3x +4y -1=0
2. Viết pt tổng quát của đg thẳng đi qua điểm I(-1;2) và vuông góc với đg thẳng có pt 2x -y +4=0
1.
Đường tròn tâm \(I\left(0;0\right)\) bán kính \(R=1\)
\(d\left(I;A\right)=\frac{\left|3.0-4.0+5\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{5}{5}=1=R\)
\(\Rightarrow\) Đáp án A đúng
2.
Do d vuông góc \(2x-y+4=0\) nên d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)