Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phương Lan
Xem chi tiết
ITACHY
Xem chi tiết
Ma Sói
13 tháng 8 2018 lúc 15:21

link nè

Bài này mk giải rồi : https://hoc24.vn/hoi-dap/question/642881.html

Pham Ngoc Diep
Xem chi tiết
Pham Ngoc Diep
Xem chi tiết
dâu cute
10 tháng 10 2021 lúc 11:27

bài 1 :

tập hợp A có 1 phần tử

tập hợp B có 7 phần tử 

bài 2 : 

a) 3 ∈ A       c) 3 ∉ B       d)  {4,m,3,n} ∈ A 

Pham Ngoc Diep
Xem chi tiết
Hồ Sỹ Sơn
Xem chi tiết
Hồ Sỹ Sơn
7 tháng 3 2018 lúc 19:58

chỉ cần bài 1,2,3 nữa thui ak

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:39

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:45

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:55

\(2,\)

Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)

Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)

 

Trần Quốc Tuấn hi
Xem chi tiết
Vũ Minh Tuấn
29 tháng 11 2019 lúc 18:41

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

Khách vãng lai đã xóa
Trần Quốc Tuấn hi
29 tháng 11 2019 lúc 18:30

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

Khách vãng lai đã xóa
Akai Haruma
29 tháng 11 2019 lúc 19:00

Bài 2:

CM vế thứ nhất:

Với $a,b,c,d>0$:

\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

CM vế thứ 2:

Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$

\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)

Cộng theo vế:

\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)

Ta có đpcm.

Khách vãng lai đã xóa
Đỗ Thu Hương
Xem chi tiết
thánh yasuo lmht
18 tháng 4 2017 lúc 18:16

a)  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)

c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)

TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH