link nè
Bài này mk giải rồi : https://hoc24.vn/hoi-dap/question/642881.html
link nè
Bài này mk giải rồi : https://hoc24.vn/hoi-dap/question/642881.html
Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
1. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+c^2+d^2\ge ab+bc+cd+da\)
c. \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
2. Cho x,y,z không âm. Cmr: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
3. Cho a+b+c=1. Cm: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
Cho a,b,c thuộc R và d > 1. CMR:
\(d^{a^2}+d^{b^2}+d^{c^2}\ge d^{ab}+d^{bc}+d^{ca}\)
CMR:
a,(\(a^4+b^4\)) ≥ \(\left(a+b\right)^4\)
b,\(\left(a^2+b^2\right)\)≥ \(ab\left(a+b\right)^2\)
c, \(a^2+b^2+c^2\)≥ a(b+c)
d, \(a^2+b^2+c^2+d^2\)≥ a(b+c+d)
Cho các số dương a,b,c,d thỏa mãn a+b+c+d=4. CMR: 1/ab + 1/bc + 1/cd + 1/da >= a²+b²+c²+d²
Cho a, b, c, d > 0. CMR: \(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\) (Dùng Cô-si )
a) Cho a+b+c=0. CM:
\(a^4+b^4+c^4=\dfrac{1}{2}\left(a^2+b^2+c^2\right)^2\)
b) Cho a+b+c+d=0. CM:\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)