\(\left(\sqrt{2}\right)^{x^2}^{+5}\ge2^{x+4}\)
Giải các bpt
a) \(\sqrt{x^2-4-12}\le x-4\)
b) \(\sqrt{x^2-8x}\ge2\left(X+1\right)\)
C) \(\left(X-2\right).\sqrt{X^2+4}< X^2-4\)
a, ĐK: \(x\ge4;x\le-4\)
\(\sqrt{x^2-4-12}\le x-4\)
\(\Leftrightarrow\sqrt{x^2-16}\le x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\x^2-16\le\left(x-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-16\le x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow x=4\left(tm\right)\)
b, ĐK: \(x\ge8;x\le0\)
\(\sqrt{x^2-8x}\ge2\left(x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2\left(x+1\right)\ge0\\x^2-8x\ge4\left(x^2+2x+1\right)\end{matrix}\right.\\2\left(x+1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow x\le\dfrac{-8+2\sqrt{13}}{3}\)
c, \(\left(x-2\right)\sqrt{x^2+4}< x^2-4\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-\sqrt{x^2+4}\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x+2-\sqrt{x^2+4}< 0\end{matrix}\right.\left(I\right)\text{v}\left\{{}\begin{matrix}x-2< 0\\x+2-\sqrt{x^2+4}>0\end{matrix}\right.\left(II\right)\)
\(\left(I\right)\Leftrightarrow\left\{{}\begin{matrix}x>2\\x+2< \sqrt{x^2+4}\end{matrix}\right.\Leftrightarrow...\)
\(\left(II\right)\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2-\sqrt{x^2+4}>0\end{matrix}\right.\Leftrightarrow...\)
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2\left(x\ge2y\right)}\)
3) 4x + \(\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
= \(\frac{ \left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
= \(\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\) = \(\frac{\left(\sqrt{7}\right)^2+2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}\)
= \(\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\) = \(\frac{24}{2}=12\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
= \(x+2y-\sqrt{\left(x-2y\right)^4}\) = \(x+2y-|x-2y|\)
= \(x+2y-\left(x-2y\right)\) = \(x+2y-x+2y=4y\)
3)\(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
= \(4x+x-12=5x-12\)
Rút gọn biểu thức:
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
3) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
4) \(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
5) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
6) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
\(a.\sqrt{4a^2}voi\:a\ge0\)
\(b.\sqrt{0,16\left(x-2\right)^2}voi\:x\ge2\)
\(c.\sqrt{25.\left(3-a\right)^2}+3\)
\(d.\frac{1}{2\left(x-5\right)}\sqrt{36.\left(x-5\right)^2}-5\:voi\:x\ne5\)
a/ \(\sqrt{4a^2}=\sqrt{\left(2a\right)^2}=\left|2a\right|=2a\)
b/ \(\sqrt{\left(\frac{2}{5}\right)^2\left(x-2\right)^2}=\frac{2}{5}\left|x-2\right|=\frac{2}{5}\left(x-2\right)=\frac{2x}{5}-\frac{4}{5}\)
c/ \(\sqrt{5^2\left(3-a\right)^2}+3=5\left|3-a\right|+3=\left[{}\begin{matrix}18-5a\left(a\le3\right)\\5a-12\left(a\ge3\right)\end{matrix}\right.\)
d/ \(=\frac{1}{2\left(x-5\right)}.6\left|x-5\right|=\frac{3\left|x-5\right|}{x-5}=\left[{}\begin{matrix}3\left(x>5\right)\\-3\left(x< 5\right)\end{matrix}\right.\)
Rút gọn các biểu thức sau:a. \(\frac{x+6\sqrt{x}+9}{x-9}\left(x\ge0;x\ne9\right)\)
b. \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
c. 4x - \(4x-\sqrt{x^2-4x+4}\left(x\ge2\right)\)
a) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
b) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
\(=2\)
c) \(4x-4x-\sqrt{x^2-4x+4}\)
\(=-\sqrt{\left(x-2\right)^2}\)
\(=-\left|x-2\right|\)
\(=-x+2\)
\(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|=\sqrt{5}+1-\sqrt{5}+1=2\)
Giải phương trình:
a) \(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\).
b) \(x^2-4x=\sqrt{x+2}\), với \(x\ge2\).
c) \(x^2-7x+2\left(x-2\right)\sqrt{x+1}+1=0\).
a:
ĐKXĐ: x>=5/2
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
=>\(2\sqrt{2x-5}+4=14\)
=>\(\sqrt{2x-5}=5\)
=>2x-5=25
=>2x=30
=>x=15
b: \(x^2-4x=\sqrt{x+2}\)
=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0
=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0
=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0
=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)
chứng minh:
a) x +\(2\sqrt{2x-4}=\sqrt{2}+\left(x-2\right)^2\) với x\(\ge2\)
b) rút gọn \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x\(\ge2\)
\(VT=x+2\sqrt{2x-4}\)
\(=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)
\(=\left(\sqrt{x-2}+\sqrt{2}\right)^2=VP\left(\text{đ}pcm\right)\)
A = \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) \(\left(x\ge0;x\ne1\right)\)
B = \(\frac{x\sqrt{x}-1}{x-1}\) \(\left(x\ge0;x\ne1\right)\)
C = \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)\(\left(x\ge2\right)\)
D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)\(\left(x\ge2\right)\)
E = \(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2}-2x}{x+\sqrt{x^2}-2x}\)
rút gọn :
\(\sqrt{x+2\sqrt{2x}-4}+\sqrt{x-2\sqrt{2x}-4}\)\(\left(x\ge2\right)\)