Giải phương trình: \(\sqrt{x+4}\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
Giải phương trình:
\(\sqrt{x-4}+\sqrt{x+4}=2\sqrt{x^2-16}+2x-12\)
Đặt \(\hept{\begin{cases}\sqrt{x-4}=a\\\sqrt{x+4}=b\end{cases}}\)
=> \(\hept{\begin{cases}a^2+b^2=2x\\b^2-a^2=8\\ab=\sqrt{x^2-16}\end{cases}}\)
Từ đó thì PT ban đầu thành
a + b = 2ab + a2 + b2 - 12
<=> (a + b)2 - (a + b) - 12 = 0
<=> \(\hept{\begin{cases}\left(a+b\right)=4\\\left(a+b\right)=-3\left(loai\right)\end{cases}}\)
Tới đây thì đơn giản rồi bạn làm tiếp nhé
Giải phương trình
1) \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
2) \(\sqrt{3}-x=\sqrt[4]{49-4\sqrt{3}.x^3-12\sqrt{3}.x}\)
Giải phương trình sau:
\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
\(\Leftrightarrow\left(2\sqrt{2x+4}+4\sqrt{2-x}\right)^2=\left(\sqrt{9x^2+16}\right)^2\)
\(\Leftrightarrow4\left(2x+4\right)+16\left(2-x\right)+16\sqrt{2x+4}\sqrt{2-x}=9x^2+16\)
\(\Leftrightarrow4.2\left(4-x^2\right)+16\sqrt{2\left(4-x^2\right)}=x^2+8x\)
Đặt \(\sqrt{2\left(4-x^2\right)}=a\)
\(\Rightarrow4a^2+16a=x^2+8x\)
\(\Leftrightarrow\left(2a-x\right)\left(2a+x+8\right)=0\)
Làm nốt
Giải phương trình: \(\sqrt{2x^2+16+18}+\sqrt{x^2+1}=2x+4\)
\(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\left(1\right)\)
\(ĐK:x\in R\)
\(pt\left(1\right)\Leftrightarrow2x^2+16x+18+x^2+1+2\sqrt[]{(2x^2+16x+18)\left(x^2+1\right)}=4x^2+16x+16\)
\(\Leftrightarrow3+2\sqrt{(2x^2+16x+18)\left(x^2+1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{(2x^2+16x+8)\left(x^2+1\right)}=x^2-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3\ge0\\4\left(2x^2+16x+8\right)\left(x^2+1\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{3}\le x\le\sqrt{3}\\4\left(2x^4+16x^3+10x^2+16x+8\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow7x^4+64x^3+46x^2+64x+23=0\)
giải các phương trình sau:
a) \(\sqrt{x^2-2x+1}\)=\(x^2-1\)
b) \(\sqrt{x^2+x+\dfrac{1}{4}}\)=\(x\)
c) \(\sqrt{x^4-8x^2+16}\)=\(2-x\)
Giải phương trình: \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
Đặt \(a=\sqrt{x+4}+\sqrt{x-4}\left(a>0\right)\)
\(\Leftrightarrow a^2=x+4+x-4+2\sqrt{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow a^2=2x+2\sqrt{x^2-16}\)
\(\Leftrightarrow a^2-12=2x-12+2\sqrt{x^2-16}\)
Do đó \(pt\Leftrightarrow a=a^2-12\)
\(\Leftrightarrow a^2-a-12=0\)
\(\Leftrightarrow\left(a-4\right)\left(a+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+\sqrt{x-4}=4\\\sqrt{x+4}+\sqrt{x-4}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\varnothing\end{matrix}\right.\)
Vậy...
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
GIẢI PHƯƠNG TRÌNH CÁC PHƯƠNG TRÌNH SAU
1) \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
2) \(x^2-\sqrt{x+5}=5\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp