Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYEN THI DIEP

Giải phương trình: \(\sqrt{x+4}\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)

qwerty
8 tháng 6 2017 lúc 20:39

Không có ai trả lời thì cho mình vậy :))

\(\sqrt{x+4}\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)

\(\Rightarrow\sqrt{\left(x+4\right)\left(x-4\right)}=2x-12+2\sqrt{x^2-16}\)

\(\Leftrightarrow\sqrt{x^2-16}=2x-12+2\sqrt{x^2-16}\)

\(\Leftrightarrow\sqrt{x^2-16}-2\sqrt{x^2-16}=2x-12\)

\(\Leftrightarrow-\sqrt{x^2-16}=2x-12\)

\(\Leftrightarrow\sqrt{x^2-16}=-2x+12\)

\(\Leftrightarrow x^2-16=\left(-2x+12\right)^2\)

\(\Leftrightarrow x^2-16=4x^2-48x+144\)

\(\Leftrightarrow x^2-16-4x^2+48x-144=0\)

\(\Leftrightarrow-3x^2-160+48x=0\)

\(\Leftrightarrow-3x^2+48x-160=0\)

\(\Leftrightarrow3x^2-48x+160=0\)

\(\Leftrightarrow x=\dfrac{-\left(-48\right)\pm\sqrt{\left(-48\right)^2-4\cdot3\cdot160}}{2\cdot3}\)

\(\Leftrightarrow x=\dfrac{48\pm\sqrt{2304-1920}}{6}\)

\(\Leftrightarrow x=\dfrac{48\pm\sqrt{384}}{6}\)

\(\Leftrightarrow x=\dfrac{48+8\sqrt{6}}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{48+8\sqrt{6}}{6}\\x=\dfrac{48-8\sqrt{6}}{6}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{24+4\sqrt{6}}{3}\\x=\dfrac{24-4\sqrt{6}}{3}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{24+4\sqrt{6}}{3};x_2=\dfrac{24-4\sqrt{6}}{3}\)


Các câu hỏi tương tự
Hoàng Bắc Nguyệt
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
illumina
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Giúp mik với mấy bạn ơi
Xem chi tiết
Lê Hương Giang
Xem chi tiết