( ko làm dc mới hỏi mà )
Tìm p nguyên tố để 2p + p2 cũng là số nguyên tố.
Tìm tất cả các số nguyên tố p để 2p + p2 còng là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố
Tìm tất cả các số nguyên tố p để: 2p + p2 là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
HT
p = 1
nha bạn
chúc bạn học tốt nha
TRẢ LỜI:
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
tìm các số nguyên tố p thỏa mãn 2p + p2 là số nguyên tố
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Tìm số nguyên tố p để 2p2+1 cũng là số nguyên tố
\(p=3\Rightarrow2p^2+1=19\)
Nhẩm nhẩm một chút là ra đó bạn
Cái này lớp 6 chứ
tìm số p nguyên tố để :
a, 2p^2+1 cũng là nguyên tố
b, 4p^2+1 , 6p^2+1 cũng là nguyên tố
a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.
Another way !!!
Ta có
\(4p^2+1=5p^2+\left(p-1\right)\left(p+1\right)\)
\(4\left(6p^2+1\right)=25p^2+\left(p-2\right)\left(p+2\right)\)
Nếu p chia 5 dư 4 hoặc dư 1 thì \(4p^2+1⋮5\)
\(\Rightarrow4p^2+1\) không là số nguyên tố vì luôn lớn hơn 5
Nếu p chia 5 dư 3 hoặc dư 2 thì \(4\left(6p^2+1\right)⋮5\Rightarrow6p^2+1⋮5\) vì \(\left(4;5\right)=1\)
\(\Rightarrow6p^2+1\) không là số nguyên tố vì luôn lớn hơn 5
Khi đó p chia hết cho 5 mà p là số nguyên tố nên p=5
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
bài 1:
a)Tìm số nguyên tố p để p+2,p+6,p+8,p+14 đều là số nguyên tố
b) cho là số nguyên tố >3, 2p+1 cũng là số nguyên tố . Chứng minh 4p+1 là hợp số
giải nhanh ghi cụ thể cách làm 2 câu nha ai làm nhanh nhất sẽ được 1 like
a)Xét P =5k ( vì P là số nguyên tố)
P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)
Xét P =5k+1( k thuộc N)
P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)
Xét P=5k+2
P + 8=5k+10 chia hêt cho 5 ( ko t/m)
Xét P=5k+3
P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)
Xét P = 5k+4
P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)
Vậy P = 5
bài a này mik còn có cách giải khác nhưng dài hơn .
b) P là số nguyên tố > 3 nên P có dạng : 3k+1 và 3k+2
TH1 : p= 3k+1 .Ta có:
2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)
TH2:p=3k+2 . Ta có:
2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)
Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số
Do đó 4p+1 là hợp số ( đpcm)
mik làm bài a và b rùi,tick nhé
Tìm các số nguyên tố p sao cho 2p-1 và 2p+1 cũng là số nguyên tố
vs p=2 bn tu xet nha. vs p=3k+1 thi bn cx tu xet .vs p=3k+2 thi bn cx tu xet vs p=3k ma p la snt nen p=3 khi do bn tu thay vao
bẠN tự xét p có dạng 3k,3k+1,3k+2 nha
thì sẽ được p có dạng 3k thì 2p-1 và 2p+1 là snt
mà p là snt =>p=3
tìm p nguyên tố để 2p+1 và 10p+1 cũng là nguyên tố
với p=2 ==>10p+1=10.2+1=21 chia hết cho 3 => là hợp số ==> loại p=2
với p=3 ==> 2p+1=2.3+1=7 là số nguyên tố
10p+1=10.3+1=31 là số nguyên tố
với p > 3 ==> p có dạng là p=3k+1 hoặc p =3k+2
nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 ==> là hợp số ==> loại
nếu p=3k+2 thì 10p+1=10(3k+2)+1=30k+20+1=30k+21=3(10k+7)chia hết cho 3 là hợp số ==> loại
Vậy với p=3 thì 2p+1 và 10+1 cũng là số nguyên tố
Ta có: 5 là số nguyên tố
31 là số nguyên tố
=> 2*2+1= 5 => p=2
=> 10*3+1=31 =>p=3