cho \(\Delta ABC\)vuông cân tại A. Kẻ AH \(\perp\)BC
a) AH = CH
b) góc BAH = góc C
\(\Delta ABC\), góc A= \(^{90^0}\), AH\(\perp\)BC
a) AB=12cm, BC=20cm. Tính AC, AH, góc B
b)Kẻ HM\(\perp\)AB, HN\(\perp\)AC. CMR: AN.AC=\(AC^2-HC^2\)
c)CM: AH=MN và AM.MB+AN.NC=\(AH^2\)
b: Xét ΔAHC vuông tại H có
\(AC^2=AH^2+HC^2\)
hay \(AH^2=AC^2-HC^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AC^2-HC^2=AN\cdot AC\)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh rằng
góc BAH = góc CAH
Ta có ΔABH = ΔACH (cmt)
Suy ra góc BAH = góc CAH (hai góc tương ứng)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh rằng
góc BAH = góc CAH
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC. Chứng minh rằng
góc BAH = góc HCA
Cho tan giác ABC cân tại A , AB=AC=5cm , BC=8cm . Kẻ AH\(\perp\)BC (H\(\in\)BC)
a)CM HB=HC : góc BAH = góc CAH
b)Tính AH
c)Gọi D và E là chân đường vuông góc , kẻ từ H tới AB và AC . CM tam giác HDE cân .
Giúp mk vs .
tự vẽ hình:
a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung
=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)
=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng)
mà HB = HC => BC/2 = 8/2= 4 ( cm)
b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2
=> 52 = x2 + 42
=> x2 = 52 - 42
=> x2 = 9
=> \(\sqrt{x}=9\)
=> x = 3
Vậy AH = 3 cm
câu c nghĩ đã :)
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC, H thuộc BC
A, Chứng minh rằng BAH bằng ACB
B, Tia phân giác của góc BAH cắt BC tại D. Chứng minh rằng CDA bằng CAD
help me ai làm đúng mik tick cho thanks
cho tam giác ABC cân tại A, kẻ AH vuông góc BC (H thuộc BC)a) Chứng minh Góc BAH=CAHb) Cho AH=3cm, Bc=8cm. Tính độ dài của AC. c)kẻ HE vuông góc AB, HD vuông góc AC. chứng minh AE=ADd) chứng minh ED song song BC
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AB = AC (△ABC cân tại A)
AH là cạnh chung
=> △BAH = △CAH (ch-cgv)
=> BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 8
Mà BH = HC (△BAH = △CAH)
=> BH = HC = 8 : 2 = 4 (cm)
Xét △AHC vuông tại H
Có: AC2 = AH2 + HC2
=> AC2 = 32 + 42
=> AC2 = 9 + 16
=> AC2 = 25
=> AC = 5 (cm)
c, Xét △EAH vuông tại E và △DAH vuông tại D
Có: AH là cạnh chung
EAH = DAH (cmt)
=> △EAH = △DAH (ch-gn)
=> AE = AD (2 cạnh tương ứng)
d, Xét △AED có: AE = AD (cmt) => △AED cân tại A
=> AED = (180o - EAD) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=3^2+4^2=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
Do đó: ΔAEH=ΔADH
=>AE=AD
d: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
Cho ABC vuông ở A. Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D .
a) Chứng minh AB//HD
b)Tính góc AHD nếu biết góc B = 60o.
c)Tia phân giác góc BAH cắt tia phân giác góc ACB tại I .. CMR: \(AI\perp CI\)
a: AB\(\perp\)AC
HD\(\perp\)AC
Do đó:AB//HD