Cho hai tập hợp :
\(A=\left\{a,b,c,d\right\};B=\left\{a,b\right\}\)
a) Dùng kí hiệu \(\subset\) để thể hiện quan hệ giữa hai tập hợp A và B
b) Dùng hình vẽ minh họa tập hợp A và B
Câu 2. Cho tập hợp $A=\left\{ 1;\,\,2;\,\,3;...;\,\,90 \right\}$. Chọn từ $A$ hai tập con phân biệt gồm hai phần tử $\left\{ a,\,\,b \right\}$, $\left\{ c,\,\,d \right\}.$ Tính xác suất để cho trung bình cộng của các phần tử trong mỗi tập đều bằng $30$.
Gọi T là biến cố "Trung bình cộng của các phần tử trong mỗi tập đều bằng 30." Biến cố này tương đương với biến cố "Tổng các phần tử trong mỗi tập đều bằng 60."
Gọi A và B lần lượt là các biến cố "Tổng của các phần tử trong tập thứ nhất bằng 60." và "Tổng của các phần tử trong tập thứ hai bằng 60."
Số các cặp \(\left(i,j\right)\) sao cho \(i\ne j;i,j\in A\) là \(C^2_{90}=4005\). Ta liệt kê các kết quả thuận lợi cho A:
\(X=\left\{\left(1;59\right);\left(2;58\right);\left(3;57\right);...;\left(29;31\right)\right\}\) (có 29 phần tử). Vậy \(P\left(A\right)=\dfrac{29}{4005}\). Khi đó \(P\left(B\right)=\dfrac{28}{4004}=\dfrac{1}{143}\). Do đó \(P\left(T\right)=P\left(AB\right)=P\left(A\right).P\left(B\right)=\dfrac{29}{4005}.\dfrac{1}{143}=\dfrac{29}{572715}\).
Vậy xác suất để trung bình cộng của các phần tử trong mỗi tập đều bằng 30 là \(\dfrac{29}{572715}\)
Cho 2 tập hợp
\(\left\{\text{A=9;12;15;18;...;201}\right\}\) và B=\(\left\{9;12;15;18;...;201\right\}\)
a. Tính số phần tử của mỗi tập hợp trên
b. viết tập hợp c gồm các phần tử vừa thuộc tập hợp A và thuộc tập hợp B bằng hai các ( liệt kê và chỉ ra tính đặc trưng)
a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)
\(B=A\) nên cũng có 65 phần tử
b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)
\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)
Tìm tất cả tập hợp con gồm hai phần tử của các tập hợp sau:
A=\(\left\{1;2\right\}\)
B=\(\left\{1;2;3\right\}\)
C=\(\left\{a,b,c,d\right\}\)
Bài 1. (1 điểm)
a) Cho hai tập hợp $A=\left( -\infty ;3 \right)$ và $B=\left[ -2;15 \right)$. Tìm $A\cup B$; $A\cap B$.
b) Cho hai tập hợp số $A=\left( m-1;m+4 \right]$ và $B=\left( -2;3 \right]$ với $m$ thuộc $\mathbb{R}$. Xác định $m$ để $A \subset B$.
a) A ∪ B = (-∞; 15)
A ∩ B = [-2; 3)
b) Để A ⊂ B thì:
m - 1 > -2 và m + 4 ≤ 3
*) m - 1 > -2
m > -2 + 1
m > -1
*) m + 4 ≤ 3
m ≤ 3 - 4
m ≤ -1
Vậy không tìm được m thỏa mãn đề bài
cho tập hợp M=\(\left\{\left(16;2\right),\left(4;32\right),\left(6;62\right),\left(78;8\right)\right\}\) mỗi lần cho phép thay thế cặp số (a,b )thuộc tập hợp M bằng cặp số (a+c;b+d),trong đó (c;d)cũng thuộc M.Hỏi M1=\(\left\{\left(2018;702\right),\left(844;2104\right),\left(1056;2176\right),\left(2240;912\right)\right\}\)đc ko?
a. xác định các tập hợp X sao cho {a;b}\(\subset X\subset\left\{a;b;c;d;e\right\}\)
b. cho A= {1;2} ; B={1;2;3;4;5}. xác định các tập hợp X sao cho \(A\cup X=B\)
c. tìm A;B biết \(A\cap B=\left\{0;1;2;3;4;5\right\};A\B=\left\{-3;-2\right\};B\A=\left\{6;9;10\right\}\)
a, \(X\in\left\{a;b\right\},\left\{a;b;c\right\},\left\{a;b;d\right\},\left\{a;b;e\right\},\left\{a;c;d\right\},\left\{a;c;e\right\},\left\{a;d;e\right\},\left\{a;b;c;d\right\},\left\{a;b;c;e\right\},\left\{a;c;d;e\right\},\left\{a;b;c;d;e\right\}\)
b,
\(X=\left\{3;4;5\right\}\)
c,đề có sai hay sao ý ạ
Cho tập hợp A = \(\left\{\forall x\in Q:\left(2x^2-3x\right)\left(x^2-2\right)\left(2x^2+5x+2\right)=0\right\}\)
a/ Hãy viết tập hợp A dưới dạng liệt kê .
b/ Hãy liệt kê các tập con của A có chứa đúng hai số nguyên .
c/ Tập A có tất cả bao nhiêu tập con .
d/ Tập A có tất cả bao nhiêu tập con có 3 phần tử .
HELP ME !!!!! MÌNH ĐANG CẦN GẤP RỒI !!!!!!
a: \(A=\left\{0;\dfrac{3}{2};-2;-\dfrac{1}{2}\right\}\)
b: {0;-2}
c: Vì A có 4 phần tử nên A có 2^4=16 tập con
d: Số tập con có 3 phần tử là: \(C^3_4=4\left(tập\right)\)
Cho tập hợp A = \(\left\{x\varepsilon N4< x< 10\right\}\)và B = \(\left\{x\varepsilon N-x\le10vafx⋮2\right\}\)
a Hỏi tập hợp a có bao nhiêu phần tử, tập hợp B có bao nhiêu phần tử
b Tìm tập hợp C là giao của hai tập hợp A và B
c Tập hợp B có phải là con của tập hợp A không và vì sao
Cho hai tập hợp \(A=\left\{1;2;3\right\}\) và \(B=\left\{1;2;3;4;5;\right\}\). Số tập hợp C thỏa mãn \(A\cup C=B\). ( Kèm lời giải )
\(B\backslash A=\left\{4;5\right\}\)
\(\Rightarrow C=\left\{4;5\right\};\left\{1;4;5\right\};\left\{2;4;5\right\};\left\{3;4;5\right\};\left\{1;2;4;5\right\};\left\{1;3;4;5\right\};\left\{2;3;4;5\right\};\left\{1;2;3;4;5\right\}\)
(Số tập C thỏa mãn đúng bằng số tập con của A)