Bài 1 : Tìm hệ số của đa thức f(x) = 2x2 +bx -5 biết rằng đa thức trên có 1 nghiệm là 1.
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
Bài 1:
a) Tìm x, biết: 3.(x - 1) - (x + 1) = - 1
b) Tìm nghiệm của đa thức: f(x) = 2x2 - x
Bài 2:
Cho đa thức f(x) = 2x2 - 3x + x + 1 ; g(x) = 3x - 3x3 + 2x2 - 2 ;
h(x) = 2x2 + 1
a) Tính g(x) - f(x) + h(x)
b)Tính f(- 1) - h(1/2)
c) Với giá trị nào của x thì f(x) = h(x)
Bài 3:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC
a) Chứng minh tam giác ADC = tam giác DAE
b) Chứng minh tam giác ABD là tam giác cân
c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?
ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !
có ai chỉ mik bt cách làm của bài toán này ko?
tìm hệ số m của đa thức f(x)=m.x-3,biết rằng đa thức f(x) có nghiệm là 1/2
Vì đa thức f(x) có nghiệm là 1/2
=> x = 1/2
Ta có
f(x) = 0
m.x - 3 = 0
m.1/2 - 3 = 0
m. 1/2 = 3
m = 3 : 1/2
m = 6
VẬY:.................
thanks nha nhưng mik vừa nghĩ ra òi
nhưng dù sao cx cảm ơn
Bài 1. Tìm đa thức P(x) = x2 + ax + b. Biết rằng nghiệm của đa thức P(x) cũng là nghiệm của đa thức Q(x) = (x+2)(x-1)
Bài 2. Cho đa thức f(x) thỏa mãn f(x) + x f(-x) = x + 1 với mọi giá trị của x. Tính f(1)
Bài 3. Cho đa thức P(x) = x(x - 2) - 2x + 2m - 2015 (x là biến số, m là hằng số). Tìm m để đa thức có nghiệm.
1,Cho đa thức :Q(x)=5x-1/2x^5-4x^4-x^3+ax^5+bx^4-c+7x^2-5.
2,Tìm a,b,c biết rằng Q(x)có bậc là 4,hệ số cao nhất là 5 và hệ số tự do là -10
Tìm đa thức bậc nhất P(x) biết rằng P(1)=5;P(-1)=1
3,CTR đa thức P(x)=x^2+x+1 ko có nghiệm
Bài 1 : Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5 Trong các số sau : 1; –1; 2; –2 số nào là nghiệm của đa thức f(x)
1. Cho đa thức f(x) thỏa mãn (x^2-4x+3) f(x+1)= (x-2) f(x-1). Chứng tỏ rằng đa thức f(x) có ít nhất 3 nghiệm.
2. Đa thức f(x)= ax^2-x+b, a khác 0 có nghiệm x=2. Biết rằng tổng của hệ số cao nhất và hệ số tự do là -7. Tìm a và b
1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)
Với \(x=1\): \(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).
2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)
Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).
Ta có hệ:
\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).