Tìm gtln của
A= -2x² + 6x - 12
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
TÌM GTLN,GTNN CỦA
A=\(2x^2-4xy+y^2+6x-10\)
Biểu thức này không có min và cũng không có max
tìm gtnn của
a)A=x^2-3x
b)B=2x^2-x
c)C=5x^2+4y-4xy-4x
d)D=x^2+5y-4xy-6x+8y+12
Bạn cũng cần xem lại đề câu c nhé.
Tìm GTLN hoặc GTNN của
A = 3x(3 - x2)
B = 2x(x - 4) - 10
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
Tìm GTLN của
A = y - \(2y^2\) + 4040
\(A=y-2y^2+4040=-2\left(y^2-\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{32321}{8}\)
\(=-2\left(y-\dfrac{1}{4}\right)^2+\dfrac{32321}{8}\le\dfrac{32321}{8}\)
\(maxA=\dfrac{32321}{8}\Leftrightarrow y=\dfrac{1}{4}\)
Tìm GTLN của -3x^2+6x+10
Chứng minh F(x)=x^6-2x^3+3x^2-5x+1/2x^3+12+3x2-6x vô nghiệm
Tìm NTQ của
a) x-3y=4
b) 2x+y=5
c) 3x+4y=12
a) \(x-3y=4\)
⇔\(x=4+3y\)
⇔\(3y=x-4\)
⇔\(y=\dfrac{x-4}{3}\)
Vậy ...
b) \(2x+y=5\)
⇔\(y=5-2x\)
⇔\(2x=5-y\)
⇔\(x=\dfrac{5-y}{2}\)
Vậy ...
c) 3x+4y=12
⇔\(3x=12-4y\)
⇔\(x=\dfrac{12-4y}{3}\)
⇔\(4y=12-3x\)
⇔\(y=\dfrac{12-3x}{4}\)
Vậy ...
Tìm GTLN hoặc GTNN của
A=x2+1
B=3x4-5
\(A\ge1\forall x\)
Dấu '=' xảy ra khi x=0
\(B\ge-5\forall x\)
Dấu '=' xảy ra khi x=0
\(A=x^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(A_{min}=1\Leftrightarrow x=0\)
\(B=3x^4-5\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(B_{min}=-5\Leftrightarrow x=0\)
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3