A=172 + 244 -1321
Chứng minh A chia
GIÚP MIK VỚI!!!!!!!!!!!!
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Cho A= 1/3*4/6*7/9*10/12*...*244/246. Chứng minh A<1/27
mik đang cần gấp
giúp mik nha ^__^<3
Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.
chứng tỏ 175 + 244 - 1321 chia hết cho 10
Muốn chia hết cho 10 thì tận cùng phải bằng 0
Ta có
5+4-1=0
=> 175+244-1321 chia hết cho 10
Tìm số tự nhiên a , biết rằng 130 chia cho a dư 10 và 172 chia cho a dư 12.
giúp mình với ặ mik đag gấp :(
Tìm chữ số tận cùng của M 1725 244 1321
1725=(174)6.17=......1.17=....7
244=......6
1321=(134)5.13=........1.13=.......3
vậy 1725+244+1321=.....7+...6....3=......6
vậy M có chữ số tận cùng là 6
Mọi người ơi giúp mik câu này với Cho A=2+2^2+2^3+2^4+...+2^30 Chứng minh A chia hết cho 7.Mong đc mn giúp đỡ.☺
Do A có 30 số hạng, ta nhóm 3 số thành 1 nhóm nên vừa đủ 10 nhóm và không dư số nào.
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30
= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^28+2^29+2^30)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^28(1+2+2^2)
= 2.7 + 2^4 .7 + ... + 2^28 .7
= 7(2+2^4+...+2^28) chia hết cho7 (DPCM)
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30
= (2+2^2+2^3)+...+(2^28+2^29+2^30)
= 2(1+2+2^2)+...+2^28(1+2+2^2)
= 2.7 + ... + 2^28 .7
= 7.(2+...+2^28) chia hết cho 7
cho a;b là các số tự nhiên thỏa mãn:a+4b chia hết cho 13. chứng minh 10a+b cũng chia hết cho 13
GIÚP MIK VỚI !!!!!!!!!
Có a+4b chia hết cho 13
=> a+13a+4b+13b chia hết cho 13
=> 14a+17b chi hết cho 13
=> 10a+4a+b+16b chia hết cho 13
=> (10a+b)+(4a+16b) chia hết cho 13
=> (10a+b)+4(a+4b) chia hết cho 13
Mà a+4b chia hết cho 13 => 4(a+4b) chia hết cho 13
=> Để (10a+b)+4(a+4b) chia hết cho 13 thì 10a+b chia hết cho 13 (đpcm)
k cho mik nha
không thực hiện phép tính hãy chứng minh A=5 =5 mũ 2 +5 mũ 3 +..+5 mũ 11 +5 mũ 12 chia hết cho 30.
mik cần gấp,mn giúp mik với
\(A=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^{10}\right)⋮30\)
cho n là số chẵn
chứng minh: \(20^n+16^n-3^n-1\) chia hết cho 323 (hoặc chứng minh hộ mik chia hết cho 19)
giúp mik với mik cảm ơn! (mik cần trước ngày 20/8)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
Chứng minh rằng
1) ( 88 + 220 ) ⋮ 17
2) A = 2 + 22 + 23 + … + 2120 chia hết cho cả 3; 7 và 15.
\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)
Mọi người giải giúp em với ạ. Em đang cần gấp !!!