so sánh M với 1
M=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
Cho M = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-....-\dfrac{1}{2^{10}}\) . So sánh M với \(\dfrac{1}{2^{11}}\)
\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
Đặt \(N=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)
\(2N=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2N-N=1-\dfrac{1}{2^{10}}\)
\(\Rightarrow N=1-\dfrac{1}{2^{10}}\)
\(\Rightarrow M=1-\left(1-\dfrac{1}{2^{10}}\right)=\dfrac{1}{2^{10}}>\dfrac{1}{2^{11}}\)
Vậy \(M>\dfrac{1}{2^{11}}\)
M=\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\) tính M
Tính:
a) \(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)b) \(B=\dfrac{1-3}{1\cdot3}+\dfrac{2-4}{2\cdot4}+\dfrac{3-5}{3\cdot5}+\dfrac{4-6}{4\cdot6}+...+\dfrac{2011-2013}{2011\cdot2013}+\dfrac{2012-2014}{2012\cdot2014}+\dfrac{2013-2015}{2013\cdot2015}\)Giúp mình với!
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
Bài 1. Chứng tỏ rằng: B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Bài 2. so sánh : A=\(\dfrac{2011+2012}{2012+2013}\)
và B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 3. Rút gọn : B= \(\left(1-\dfrac{1}{1}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
Bài 4. Rút gọn biểu thức : A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Bài 5. Tìm số nguyên \(\pi\) sao cho \(\pi+5\) chia hết cho \(\pi-2\)
HELP ME!!!! MÌNH TICK CHO HA
Bài 1)
Ta có:
A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1
Vậy A < 1
Bài 2)
Ta thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) A < B
Bài 3)
Ta có:
B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= 0
Bài 3)
Ta có:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)
\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)
\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)
Bài 5)
\(\pi\) + 5 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)
So sánh \(A\) với \(\dfrac{3}{4}\), biết \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
1/32< 1/2.3
1/42< 1/3.4
...
1/1002< 1/99.100
=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4
=> A < 3/4
Cho M=\(\dfrac{1}{5}\)+\(\dfrac{2}{5^2}\)+\(\dfrac{3}{5^3}\)+...+\(\dfrac{2014}{5^{2014}}\). So sánh M với \(\dfrac{5}{36}\)
Lời giải:
$M=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}$
$5M=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}$
$\Rightarrow 4M=5M-M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}$
$4M+\frac{2014}{5^{2014}}=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}$
$5(4M+\frac{2014}{5^{2014}})=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}$
$\Rightarrow 4(4M+\frac{2014}{5^{2014}})=5-\frac{1}{5^{2013}}$
$M=\frac{5}{16}-\frac{1}{16.5^{2013}-\frac{2014}{4.5^{2014}}$
M=\(\dfrac{1}{1.5}\)+\(\dfrac{2}{5.13}\)+\(\dfrac{3}{12.25}\)+\(\dfrac{4}{25.41}\) và N=\(\dfrac{2}{1.7}\)+ \(\dfrac{3}{7.16}\)+\(\dfrac{4}{16.28}\)+\(\dfrac{5}{28.43}\)+\(\dfrac{6}{43.61}\)
so sánh M và N
M=1/4(4/1*5+8/5*13+...+16/25*41)
=1/4(1-1/5+1/5-1/13+...+1/25-1/41)
=40/41*1/4=10/41
\(N=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{16}+...+\dfrac{1}{43}-\dfrac{1}{61}\right)=\dfrac{1}{3}\cdot\dfrac{60}{61}=\dfrac{20}{61}\)
=>M<N
1.tính M=\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
\(M=\frac{\frac{7}{2012}+\frac{7}{9}-\frac{1}{4}}{\frac{5}{9}-\frac{3}{2012}-\frac{1}{2}}\)
\(M=\frac{\frac{63}{18108}-\frac{14084}{18108}-\frac{4527}{18108}}{\frac{10060}{18108}-\frac{27}{18108}-\frac{9054}{18108}}\)
\(M=\frac{-18548}{979}\)
Mình tin chắc đề bài sai , số to quá !!!
Với mọi số tự nhiên n \(\ge\)2 hãy so sánh: P = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)với 1
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow P< 1\)