chứng minh đa thức khhong có nghiệm
A=x^2-xy^3+y^2+5
Cho đa thức: A= x\(^6\)+5+xy-x-2x\(^2\)-x\(^5\)-xy-2. a)Thu gọn và tìm bậc của đa thức A b)Tính giá trị của đa thức A với x=-1,y=2018 c)Chứng tỏ x=1 là nghiệm của đa thức A
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a, \(A=x^6+5+xy-x-2x^2-x^5-xy-2=x^6-x^5-2x^2-x+3\)
Bậc 6
b, Với x = -1 suy ra : \(1-\left(-1\right)-2-\left(-1\right)+3=1+1-2+1+3=4\)
c, Vì x = 1 là nghiệm của đa thức A nên Thay x = 1 vào đa thức A ta được
\(1-1-2-1+3=0\)( luôn đúng )
Vậy ta có đpcm
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Cho x-y=1 chứng minh đa thức sau là hằng số.
a. P=x^2-xy-x-xy^2-y^3-y^2+5
b. Q= x^3-x^2y-x^2+xy^2-y^3-y^2+5x-5y-2015
Cho đa thức P(x)=2(x-3)^2+5. Chứng minh rằng đa thức đã cho không có nghiệm
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
giả sử
=> P(x)= 2(x-3)^2+5=0
=> 2(x3)^2 = -5
Vì (x-3)^2 lướn hơn ..........
=> đa thức trên vô nhiệm
a, chứng minh đẳng thức
\(x^n-y^n=\left(x-y\right)\left(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1}\right)\)
b, cho F(x) là đa thức với các hệ số nguyện. giả sử F(2011) và F(2012) là các số nguyên lẻ. chứng minh đa thức F(x) không có nghiệm nguyên
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2
cho đa thức: N= x^2 - 2 xy +y^2
tìm giá trị a của đa thức N(x)=a.x^3-2ax-3, biết N(x) có nghiệm x=-1
Cho 3 đa thức : F=x^2+y+z; G= y^2-xyz và H=z^2-xy. Chứng minh rằng khi x,y,z lấy giá trị bất kì khác 0 thỏa x+y=z^3 thì trong 3 đa thức trên có ít nhất 1 đa thức có giá trị dương
Cho x-y=1. chứng minh rằng: giá trị của mỗi đa thức sau là một hằng số:
P=x^2-xy+xy^2-y^3-y^2+5
Q=x^3-x^2y-x^2+xy^2-y^3-y^2+5x-5y-2x+2