chứng minh : a+b/2 > căn ab
HELP ME !!!!
HELP ME:
a<b chứng minh căn a< căn b???????????????????????????????????
với a,b>0:
a<b =>a-b<0 => (căn a + căn b)*(căn a- căn b)<0 mà (căn a + căn b)>0 =>(căn a- căn b)<0 =>căn a<căn b
Chứng minh bất đẳng thức a^2+b^2/4 lớn hơn hoặc bằng ab
Help me.....
cho tam giác ABC có AB=AC gọi M,N lần lượt là trung điểm của các cạnh AB,AC trên tia đối của tia NM lấy điểm E sao cho NE=NM
a) chứng minh tam giác ANM= tam giác CNE. Từ đó suy ra CE=MB và CE song song MB
b) trên tia đối của tia BA lấy điểm D sao cho BD = BA .Chứng minh AE=CD/2
help me !help me ! help me!help me!
Mn help me!!!
a) Chứng minh rằng \(ab\left(a+b\right)⋮2\left(a;b\in N\right)\)
b) Chứng minh rằng \(\left(\overline{ab}-\overline{ba}\right)⋮9\left(a;b\in N,a>b\right)\)
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
Mn help me!!!
a) Chứng minh rằng \(ab\left(a+b\right)⋮2\left(a;b\inℕ\right)\)
b) Chứng minh rằng \(\left(\overline{ab}-\overline{ba}\right)⋮9\left(a;b\inℕ,a>b\right)\)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
\(a)\text{Với a hoặc b = 2k bài toán coi như xong}\)
\(\text{Nếu 2 và b = 2k + 1}\)
\(2k+1=2p+1=2(p+k+1)⋮2(đpcm)\)
\(b)10a+b-10b-a=9a-9b⋮9(đpcm)\)
Cho hình thang ABCD có góc B= góc C =90o. Hai đường chéo vuông góc với nhau tại H. Biết AB=3 căn 5 cm,HA=3cm. Chứng minh
HA:HB:HC:HD=1:2:4:8
Help me,please
Cho biểu thức \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{20}}}}}\) (2017 dấu căn bậc 2)
Chứng minh A < 5
Help me!!
Cho ba số dương a,b,c. Chứng minh bất đẳng thức căn(2/a) + căn(2/b) + căn(2/c) <= căn((a+b)/ab) + căn((b+c)/bc) + căn((c+a)/ac)
Cho a,b > 0 và a+b=1
Chứng minh: \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Help me :)))))))))) Mình cần gấp
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)