Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jodie Starling
Xem chi tiết
Thanh Hà Hương
Xem chi tiết
Giang Luu
20 tháng 1 2020 lúc 19:23

1. Tìm số nguyên x sao cho:

( Chia hết cho: CHC)

a) n+8 CHC n+1

Ta có: n+8 CHC n+1

=> n+1+7 CHC n+1 (1)

Mà n+1 CHC n+1 (2)

Từ (1) và (2) => 7 CHC n+1

=> n+1 là các ước nguyên của 7

=> n+1 thuộc {1;-1;7;-7}

=> n thuộc {0;-2;6;-8}

Thử lại ta thấy n thuộc {0;-2;6;-8} (thỏa mãn, chọn)

Vậy n thuộc {0;-2;6;-8} là các giá trị cần tìm

b) 3n+11 CHC n+2

Ta có: 3n+11 CHC n+2 (1)

Mà 3(n+2) CHC n+2

=> 3n+6 CHC n+2 (2)

Từ (1) và (2) => 3n+11-(3n+6) CHC n+2

=> 3n+11-3n-6 CHC n+2

=> 5 CHC n+2

=> n+2 là các ước nguyên của 5

=> n+2 thuộc {1;-1;5;-5}

=> n thuộc {-1;-3;3;-7}

Thử lại ta thấy n thuộc {-1;-3;3;-7} (thỏa mãn, chọn)

Vậy n thuộc {-1;-3;3;-7}là các giá trị cần tìm

c) 4n+5 CHC 3n+2

Ta có: 4n+5 CHC 3n+2

Mà 3(4n+5) CHC 3n+2

=> 12n+15 CHC 3n+2 (1)

Mà 4(3n+2) CHC 3n+2

=> 12n+8 CHC 3n+2 (2)

Từ (1) và (2) => 12n+15-(12n+8) CHC 3n+2

=> 12n+15-12n-8 CHC 3n+2

=> 7 CHC 3n+2

=> 3n+2 là các ước nguyên của 7

=> 3n+2 thuộc {1;-1;7;-7}

=> 3n thuộc {-1;-3;5;-9}

=> n thuộc { /; -1; /; -3}

=> n thuộc {-1; -3}

Thử lại ta thấy n thuộc {-1; -3} (thỏa mãn, chọn)

Vậy n thuộc {-1; -3} là các giá trị cần tìm

d) n^2+9 CHC n+2

( mk k bt lm câu này, sorry nha!!!)

Khách vãng lai đã xóa
Giang Luu
20 tháng 1 2020 lúc 19:37

4. Tính nhanh

a) 69.17+169.(-17)

= [ 17 +(-17) ] + (69.196)

=0+69.196

= 11661

b) (-125).(-1)^10.(-4).8.25.16

= (-125).1.(-4).8.25.16

= [ (-125).8] . [(-4).25] .(1.16)

= -1000. (-100).16

= 100000.16

= 1600000

( tick cho mk hai bài nha mn )

Khách vãng lai đã xóa
Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

sunny
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 10:56

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

trietpham
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 lúc 20:14

\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{5-x}=b\\\sqrt[3]{4x-3}=c\\\sqrt[3]{9-2x}=d\end{matrix}\right.\) 

Ta được: \(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)

TH1:

Nếu \(a+b=c+d=0\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x+1=-\left(5-x\right)\\4x-3=-\left(9-2x\right)\end{matrix}\right.\) \(\Rightarrow x=-3\)

TH2: nếu \(a+b=c+d\ne0\)

\(a+b=c+d\Leftrightarrow\left(a+b\right)^3=\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3+d^3+3cd\left(c+d\right)\)

\(\Leftrightarrow ab\left(a+b\right)=cd\left(c+d\right)\) (do \(a^3+b^3=c^3+d^3\))

\(\Leftrightarrow ab=cd\) (do \(a+b=c+d\ne0\))

\(\Leftrightarrow\sqrt[3]{\left(3x+1\right)\left(5-x\right)}=\sqrt[3]{\left(4x-3\right)\left(9-2x\right)}\)

\(\Leftrightarrow\left(3x+1\right)\left(5-x\right)=\left(4x-3\right)\left(9-2x\right)\)

\(\Leftrightarrow5x^2-28x+32=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{8}{5}\end{matrix}\right.\)

Vậy \(x=\left\{-3;4;\dfrac{8}{5}\right\}\)

Nguyễn Việt Lâm
29 tháng 1 lúc 19:49

Cái cuối này căn bậc 2 hay căn bậc 3 em? Căn bậc 2 thì hơi nghi ngờ về khả năng giải được của pt này. 

Rin Trương
Xem chi tiết
Không Tên
6 tháng 8 2018 lúc 20:39

\(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

   \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

   \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

  \(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Đến đây thay n vào tính S nhé

trần văn quyết
Xem chi tiết
nguyen thi tuyet
16 tháng 5 2018 lúc 13:40

n=1;m=2.nha

thiyy
Xem chi tiết
Trần Vũ Minh Huy
6 tháng 10 2023 lúc 22:30

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

Akai Haruma
7 tháng 10 2023 lúc 19:11

Lời giải:

a. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-3\sqrt{x-3}=0$

$\Leftrightarrow \sqrt{x-3}(\sqrt{x+3}-3)=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}-3=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}=3$

$\Leftrightarrow x=3$ hoặc $x=6$ (tm)

b.

PT \(\Rightarrow \left\{\begin{matrix} x-3\geq 0\\ 4x^2-12x+9=(x-3)^2=x^2-6x+9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x(x-2)=0\end{matrix}\right.\)

$\Rightarrow$ không có giá trị $x$ nào thỏa mãn 

Vậy pt vô nghiệm.

c.

PT \(\Rightarrow \left\{\begin{matrix} 3x-1\geq 0\\ x^2+6x+9=(3x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ x^2+6x+9=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 8x^2-12x-8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 4(x-2)(2x+1)=0\end{matrix}\right.\Leftrightarrow x=2\)