Bài 6: Tìm x, biết:
2x(x - 5) – x(3 + 2x) = 26
GIÚP MÌNH GIẢI BÀI NÀY NHA
Bài 1 : Tìm x, biết
2x( x - 5 ) - x( 3 + 2x ) = 26
Tìm x, biết: 2x(x – 5) – x(3 + 2x) = 26.
Ta có: 2x(x – 5) – x(3 + 2x) = 26
⇔ 2 x 2 – 10x – 3x – 2 x 2 =26
⇔ - 13x = 26
⇔ x = - 2
Tìm x, biết: 2x(x – 5) – x(3 + 2x) = 26.
Ta có: 2x(x – 5) – x(3 + 2x) = 26
⇔ 2x2 – 10x – 3x – 2x2 =26
⇔ - 13x = 26
⇔ x = - 2
bài 11 phân tích đa thức thành nhân tử
a,\(x^2-xy+x\) b,\(x^2-2xy-4+y^2\) c,\(x^3-x^2-16x+16\)
bài 12 tìm x biết :
a,\(2x\left(x-5\right)-x\left(3+2x\right)=26\) b,\(2\left(x+5\right)-x^2-5x=0\)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Tìm x , biết
2x(x-5)-x(3+2x)=26
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Bài làm:
Ta có: \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x=26\)
\(\Rightarrow x=-2\)
2x( x - 5 ) - x( 3 + 2x ) = 26
<=> 2x2 - 10x - 3x - 2x2 = 26
<=> -13x = 26
<=> x = -2
Tìm x, biết 2x(x-5) - x (3+2x) = 26
2x(x-5) - x(3+2x) = 26
<=> 2x^2 - 10x - 3x - 2x^2 = 26
<=> -13x=26
<=> x = -2
2x(x-5) - x (3+2x) = 26
=> 2x2 - 10x - 3x - 2x2 = 26
=> (2x2 - 2x2) + (-10x - 3x) = 26
=> -13x = 26
=> x = 26 : (-13)
=> x = -2
2x(x-5)-x(3+2x)= 26
2x2-10x-3x-2x2= 26
-13x = 26
x = -2
Bài 2 : Tìm x biết:
a) 2x(x – 5) – x(3 + 2x) = 26 b) 5x(x – 1) = x – 1
c) 2(x + 5) - x2 – 5x = 0 d) (2x – 3)2 - (x + 5)2=0
e) 3x3 – 48x = 0 f) x3 + x2 – 4x = 4
g) (x – 1)(2x + 3) – x(x – 1) = 0 h) x2 – 4x + 8 = 2x – 1
Bài 3: Sắp xếp rồi làm tính chia:
a)
b)
Bài 4: Tìm a sao cho
a) Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b) Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Bài 5*: Chứng minh rằng biểu thức:
A = x(x - 6) + 10 luôn luôn dương với mọi x.
B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.
Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :
A = x2 – 4x + 2019 B = 4x2 + 4x + 11
C = 4x – x2 +1 D = 2020 – x2 + 5x
E = (x – 1)(x + 3)(x + 2)(x + 6) F= - x2 + 4xy – 5y2 + 6y – 17
G = x2 – 4xy + 5y2 + 10x – 22y + 28
Bài 7: Cho biểu thức M =
a/ Tìm điều kiện để biểu thức M có nghĩa ?
b/ Rút gọn biểu thức M ?
c/ Tìm x nguyên để M có giá trị nguyên.
d/ Tìm giá trị của M tại x = -2
e/ Với giá trị nào của x thì M bằng 5.
Bài 8 : Cho biểu thức : M =
a) Tìm điều kiện xác định và rút gọn biểu thức
b) Tính giá trị của M khi x = 1; x = -1
c) Tìm số tự nhiên x để M có giá trị nguyên.
Bài 9: Cho biểu thức
a/Tìm giá trị của x để giá trị của biểu thức C được xác định.
b/Tìm x để C = 0.
c/ Tính giá trị của C biết |2x -1| = 3
d/ Tìm x để C là số nguyên âm lớn nhất.
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
TÌM X BIẾT:
2x(x - 5) - x(3+2x) = 26
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^