chứng minh 1/1 +1/2^2 +1/3^2+...+1/n^2 < 2-1/n
1. Chứng minh: \(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)
2. Chứng minh: \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6
M = 3n+1.(32 + 1) + 2n+2.(2 + 1)
M = 3n.3.(9 + 1) + 2n+1.2 . 3
M = 3n.30 + 2n+1.6
M = 6.(3n.5 + 2n+1)
Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)
chứng minh \(1^2+2^2+...+n^2=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n\)
\(1^2+2^2+...+n^2=1+2\left(1+1\right)+...+n\left(n-1+1\right)=1+2+1.2+3+2.3+...+n+\left(n-1\right)n\)
\(=\left(1+2+3+...+n\right)+\left[1.2+2.3+...+\left(n-1\right)n\right]=\dfrac{\left(n+1\right)\left(\dfrac{n-1}{1}+1\right)}{2}+\dfrac{1.2.3+2.3.3+...+\left(n-1\right)n.3}{3}=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3+2.3.\left(4-1\right)+...+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3-1.2.3+2.3.4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)}{3}\)
\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{3n\left(n+1\right)+2\left(n-1\right)n\left(n+1\right)}{6}=\dfrac{2n^3+3n^2+n}{6}=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n=\dfrac{1}{3}n\left(n^2+\dfrac{3}{2}n+\dfrac{1}{2}\right)=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)\)
Chứng minh 1/1^2+1/2^2+1/3^2+...+1/n^2<5/3 với 1/n^2>1
Chứng minh 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 với n thuộc N, n >= 4
a, chứng minh phân số A= 12.n+1/30.n+2 là phân số tối giản với mọi số nguyên n.
b,cho A=(1/2^2-1).(1/3^2-1).(1/4^2-1).....(1/100^2-1).chứng minh A<-1/2
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
Chứng minh 1/ 1*3 + 1/ 3*5 +......+ 1/(2*n-1) * (2*n+1) <1/2
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(2A=1-\frac{1}{2n+1}< 1\)
\(\Leftrightarrow A< \frac{1}{2}\)
đpcm
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
chứng minh 1^3+2^3+...+(n+1)^3=3(1^2+2^2+3^2+...+n^2)
Với n=1n=1 thì đẳng thức hiển nhiên đúng.
Giả sử (1) đúng với n=kn=k tức là:
13+23+33+...+k3=(1+2+3+...+k)213+23+33+...+k3=(1+2+3+...+k)2
Ta sẽ cm (1) đúng với n=k+1n=k+1 tức là cm:
13+23+33+...+k3+(k+1)3=(1+2+3+...+k+k+1)213+23+33+...+k3+(k+1)3=(1+2+3+...+k+k+1)2
Thật vậy, ta có:
13+23+33+...+k3+(k+1)3=(1+2+3+...+k+k+1)213+23+33+...+k3+(k+1)3=(1+2+3+...+k+k+1)2
⇔(13+23+33+...+k3)+(k+1)3=(1+2+3+...+k)2+(k+1)2+2(1+2+3+...+k)(k+1)⇔(13+23+33+...+k3)+(k+1)3=(1+2+3+...+k)2+(k+1)2+2(1+2+3+...+k)(k+1)
⇔(k+1)3=(k+1)2+2(1+2+3+...+k)(k+1)⇔(k+1)3=(k+1)2+2(1+2+3+...+k)(k+1)
Mà: (k+1)2+2(1+2+3+...+k)(k+1)=(k+1)2+2.k(k+1)(k+1)2=(k+1)3(k+1)2+2(1+2+3+...+k)(k+1)=(k+1)2+2.k(k+1)(k+1)2=(k+1)3
Do đó (1) đúng với n=k+1n=k+1
Theo nguyên lý quy nạp, ta có đpcm.