Những câu hỏi liên quan
Hồng Oanh Nguyễn Thị
Xem chi tiết
Lê Nhật Phương
Xem chi tiết
Đặng Dung
Xem chi tiết
Trần Đạt
4 tháng 10 2017 lúc 21:57

thangbnsh@gmail.com helpme

Trần Đạt
4 tháng 10 2017 lúc 21:58

thangbnsh@gmail.comacelegona

Nguyễn Nam
Xem chi tiết
Nguyen Van Huong
27 tháng 4 2017 lúc 19:50

e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=1+\frac{b}{a}+\frac{a}{b}+1\)

\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)

\(=2+\frac{a.a+b.b}{b.a}\)

\(\frac{a.a+b.b}{a.b}>=2\) 

Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)

Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)

Nguyen Van Huong
27 tháng 4 2017 lúc 19:40

a) \(a^2+b^2-2ab\)

\(=\left(a-b\right)^2\)

\(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)

Hay \(a^2+b^2-2ab>=0\)

Nguyen Van Huong
27 tháng 4 2017 lúc 19:44

c) \(a\left(a+2\right)\)

\(=a^2+2a\)

\(\left(a+1\right)^2\)

\(=\left(a+1\right)\left(a+1\right)\)

\(=a^2+a+a+1\) 

\(=a^2+2a+1\)

\(a^2+2a< a^2+2a+1\)

Nên \(a\left(a+2\right)< \left(a+1\right)^2\)

Nguyen Thanh Hien
Xem chi tiết
meme
2 tháng 9 2023 lúc 17:18

Để chứng minh bất đẳng thức (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2, ta sẽ sử dụng phương pháp chứng minh bất đẳng thức bằng phương pháp chứng minh định lý hình học.

Giả sử a, b, c là các số thực và (a, b, c) không phải là (0, 0, 0). Ta có thể viết lại bất đẳng thức trên dưới dạng:

(a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] - 9/2 ≥ 0

Mở rộng và rút gọn biểu thức ta có:

2a^4 + 2b^4 + 2c^4 + 4a^2b^2 + 4b^2c^2 + 4c^2a^2 - 2a^3b - 2ab^3 - 2b^3c - 2bc^3 - 2c^3a - 2ca^3 - 9/2 ≥ 0

Đặt x = a^2, y = b^2, z = c^2, ta có:

2x^2 + 2y^2 + 2z^2 + 4xy + 4yz + 4zx - 2x^(3/2)√y - 2x√y^(3/2) - 2y^(3/2)√z - 2yz^(3/2) - 2z^(3/2)√x - 2zx^(3/2) - 9/2 ≥ 0

Đặt t = √x, u = √y, v = √z, ta có:

2t^4 + 2u^4 + 2v^4 + 4t^2u^2 + 4u^2v^2 + 4v^2t^2 - 2t^3u - 2tu^3 - 2u^3v - 2uv^3 - 2v^3t - 2vt^3 - 9/2 ≥ 0

Nhận thấy rằng biểu thức trên có thể viết dưới dạng tổng của các bình phương:

(t^2 + u^2 + v^2 - tu - uv - vt)^2 + (t^2 - u^2)^2 + (u^2 - v^2)^2 + (v^2 - t^2)^2 ≥ 0

Vì mọi số thực bình phương đều không âm, nên bất đẳng thức trên luôn đúng. Từ đó, ta có chứng minh rằng (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2.

Trần Hà Trang
Xem chi tiết
Phan Nghĩa
28 tháng 7 2020 lúc 9:54

a , sai đề thì phải @@

b, \(\frac{a^2+b^2}{2}\ge ab< =>a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

c, \(\left(a+1\right)^2>a\left(a+2\right)< =>a^2+2a+1>a^2+2a< =>1>0\)*đúng*

d, Áp dụng BĐT Cauchy cho 2 số :

\(m^2+1\ge2m\)

\(n^2+1\ge2n\)

Cộng theo vế ta có điều phải chứng minh 

Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 7 2020 lúc 9:56

e, Áp dụng BĐT Cauchy cho 2 số không âm ta có :

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

Nhân theo vế các BĐT cùng chiều ta được :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Trần Hà Trang
28 tháng 7 2020 lúc 15:56

câu a.    \(a^2+b^2-2ab\ge0\)

Khách vãng lai đã xóa
Trần Đạt
Xem chi tiết
Nguyễn Huy Thắng
4 tháng 10 2017 lúc 22:20

đừng tag tui, tui k làm đâu

Nguyễn Quỳnh
Xem chi tiết
Neet
7 tháng 12 2017 lúc 22:18

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

Unruly Kid
8 tháng 12 2017 lúc 12:03

...........

Unruly Kid
8 tháng 12 2017 lúc 12:55

2) Ta có nhận xét sau: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)

Áp dụng Cauchy-Schwarz dạng Engel và AM-GM, ta có:

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{34}{ab}+2ab\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(a+b\right)^2}+\dfrac{34}{ab}+544ab-542ab\)

\(A\ge4+4+2\sqrt{\dfrac{34}{ab}.544ab}-542.\dfrac{\left(a+b\right)^2}{4}\)

\(A\ge8+272-\dfrac{271}{2}=144,5\)

GTNN của A là 144,5 khi \(a=b=\dfrac{1}{2}\)

Ngọc Hiền
Xem chi tiết
Lightning Farron
23 tháng 3 2017 lúc 18:31

Áp dụng BĐT Cauchy-Schwarz ta có:

\((ab+a+1)^2 \le (a+b+c) \left( a+ a^2b+ \frac 1c \right) = (a+b+c)(a+a^2b+ab)\)

\(\Rightarrow \dfrac{a}{(ab+a+1)^2} \ge \dfrac{a}{(a+b+c)(a+a^2b+ab)}= \dfrac{1}{(a+b+c)(1+ab+b)}\)

Thiết lập các BĐT tương tự rồi cộng theo vế ta có:

\(\sum \dfrac{a}{(ab+a+1)^2} \ge \dfrac{1}{a+b+c} \sum \dfrac{1}{ab+b+1}= \dfrac{1}{a+b+c}\)

Neet
23 tháng 3 2017 lúc 21:21

c2: Áp dụng BĐT bunyakovsky:

\(\left(a+b+c\right)\left[\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right]\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\right)^2\)

Xét \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{ab+a+1}{ab+a+1}=1\)

do đó \(\left(a+b+c\right).VT\ge1\Leftrightarrow VT\ge\dfrac{1}{a+b+c}\)

dấu = xảy ra khi a=b=c=1