Giải và biện luận các phương trình sau theo tham số m :
a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
b) \(\dfrac{\left(m+3\right)x}{2x-1}=3m+2\)
c) \(\dfrac{8mx}{x+3}=\left(4m+1\right)x+1\)
d) \(\dfrac{\left(2-m\right)x}{x-2}=\left(m-1\right)x-1\)
Giải và biện luận các phương trình sau theo tham số m :
a) \(\left|2x-5m\right|=2x-3m\)
b) \(\left|3x+4m\right|=\left|4x-7m\right|\)
c) \(\left(m+1\right)x^2+\left(2m-3\right)x+m+2=0\)
d) \(\dfrac{x^2-\left(m+1\right)x-\dfrac{21}{4}}{x-3}=2x+m\)
1. Cho phương trình \(\left(x^2+\text{ax}+1\right)^2+a\left(x^2+\text{ax}+1\right)+1=0\) có nghiệm duy nhất. Chứng minh \(a>2\)
2. Cho a,b,c thỏa mãn \(a+2b+5c=0.Cmr:\) \(\text{ax}^2+bc+c=0\) có nghiệm
3. Giả sử phương trình \(\left(m+3\right)x^2+2\left(m+1\right)x+m=0\) có 2 nghiệm \(x_1,x_2\). Tìm a để \(F=\left(x_1-a\right)\left(x_2-a\right)\) không phụ thuộc vào m
1. Chứng minh rằng: phương trình \(x^2-\left(m-1\right)x+2m-7=0\) luôn có 2 nghiệm phân biệt.
Tìm GTNN của \(T=\dfrac{1}{\left(x_1-1\right)^{2018}}+\dfrac{1}{\left(x_2-1\right)^{2018}}\) với \(x_1,x_2\) là 2 nghiệm của phương trình.
2. Giải phương trình \(\left(x+1\right)\sqrt{2x^2-1}=\left(x-1\right)\left(2x-1\right)\)
3. Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(x^2+\left(y-z\right)^2\right)=2\\y\left(y^2+\left(z-x\right)^2\right)=16\\z\left(z^2+\left(x-y\right)^2\right)=30\end{matrix}\right.\)
Bài 2 : Cho hai số dương a và b . Chứng minh \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) . Dấu ''='' xảy ra khi nào ?
bài tập : Tìm m để các phương trình sau nghiệm đúng với mọi X
a,\(mx^2-4\left(m-1\right)x+m-5< =0\)
b, \(m\left(m+2\right)x^2+2mx+2>0\)
c, \(mx^2+9\left(m-1\right)x+m-1< 0\)
MỌI NGƯỜI GIÚP EM BÀI NÀY VỚI Ạ!!!
\(A=\left(-1,5\right)^22\dfrac{2}{3}-\dfrac{1}{6}+\left(\dfrac{4}{7}-\dfrac{2}{5}\right):1\dfrac{1}{35}\)
Tìm m để:
a) Phương trình \(\left(x^2+2x+2\right)^2+2\left(x^2+2x+2\right)-3=m\) có nghiệm
b) Phương trình \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có bốn nghiệm phân biệt
Tìm m để PT có 2 nghiệm x1,x2 thỏa mãn
a,\(x^2-2x-m^2-2m=0\left(x1< 2< x2\right)\)
b, \(2x^2+\left(m-6\right)x-m^2-3m=0\left(1< x1< x2\right)\)
c, \(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)