Xét sự đồng biến , nghịch biến của hàm số
Xét sự đồng biến, nghịch biến của hàm số:
y = x 4 - 2 x 2 + 3
Tập xác định: D = R
y'= 4x3 – 4x.
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x.(x – 1)(x + 1) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; -1) và (0 ; 1); đồng biến trong các khoảng (-1 ; 0) và (1; +∞).
Xét sự đồng biến, nghịch biến của hàm số: y = - x 3 + x 2 - 5
Tập xác định: D = R
y'= -3x2 + 2x
y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).
Xét sự đồng biến, nghịch biến của các hàm số: y = 3 x 2 - 8 x 3
TXĐ: R
y′ = 6x − 24 x 2 = 6x(1 − 4x)
y' = 0 ⇔
y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)
y' < 0 trên các khoảng (- ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng (- ∞ ;0 ); (14;+ ∞ )
Xét sự đồng biến, nghịch biến của hàm số:
y = 4 + 3x – x2
Tập xác định : D = R
y' = 3 – 2x
y’ = 0 ⇔ 3 – 2x = 0 ⇔ x =
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).
Xét sự đồng biến, nghịch biến của hàm số:
y = 1 3 x 3 + 3 x 2 - 7 x - 2
Tập xác định : D = R
y' = x2 + 6x - 7
y' = 0 ⇔ x = -7 hoặc x = 1
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).
Xét sự đồng biến, nghịch biến của các hàm số: y = x 3 − 6 x 2 + 9x
TXĐ: R
y′ = 3 x 2 − 12x + 9
y' = 0
y' > 0 trên các khoảng (- ∞ ; 1), (3; + ∞ ) nên y đồng biến trên các khoảng (- ∞ ; 1), (3; + ∞ )
y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)
Xét sự đồng biến, nghịch biến của các hàm số: y = x 4 + 8 x 2 + 5
TXĐ: R
y′ = 4 x 3 + 16 = 4x( x 2 + 4)
y' = 0 ⇔
y' > 0 trên khoảng (0; + ∞ ) ⇒ y đồng biến trên khoảng (0; + ∞ )
y' < 0 trên khoảng (- ∞ ; 0) ⇒ y nghịch biến trên khoảng (- ∞ ; 0)
xét sự đồng biến, nghịch biến của hàm số: y=sin 1/x (x>0)
kiểu bài này có đáp án trên mạng rồi ấy ạ, anh/chị/ bạn nào mà xem qua đáp án trên mạng có thể giải thích kĩ hơn giúp em chỗ cos 1/x >0 về đoạn sau được không ạ, chứ ai đọc mãi mà không hiểu được 😭😭
Bất phương trình lượng giác:
\(cos\left(X\right)\ge a\Leftrightarrow-arccos\left(a\right)+k2\pi\le X\le arccos\left(a\right)+k2\pi\)
Vậy BPT: \(cos\left(\dfrac{1}{x}\right)>0\)
\(\Leftrightarrow-\dfrac{\pi}{2}+k2\pi\le\dfrac{1}{x}\le\dfrac{\pi}{2}+k2\pi\) với \(k\ge1\)
Nghịch đảo: \(\dfrac{2}{k4\pi-\pi}\le x\le\dfrac{2}{k4\pi+\pi}\)
Xét sự đồng biến, nghịch biến của các hàm số: y = sin(1/x), (x > 0)
Xét hàm số y = sin(1/x) với x > 0.
Giải bất phương trình sau trên khoảng (0; + ∞ ):
Do đó, hàm số đồng biến trên các khoảng
Và nghịch biến trên các khoảng
với k = 0, 1, 2 …