Chứng minh biểu thức sau luôn không âm : x2 + 3xy + 3y2
Chứng minh rằng đa thức sau luôn không âm với mọi giá trị của x và y.
M\( = 6x^2+3xy-2y^2-5+3y^2-2x^2-3xy+5\)
M = 6x2+3xy- 2y2- 5 +3y2 - 2x2-3xy+5
= (6x2- 2x2) + ( 3xy -3xy) + ( - 2y2- 2y2)+ (- 5+5)
= 4x2+ y2
Mà 4x2 >0
y2> 0
Vậy....
Chứng minh biểu thức A = - x2 + 2/3x – 1 luôn luôn âm với mọi giá trị của biến
\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)
\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)
vậy bt A luôn......
a)Chứng minh thuoqng của phép chia sau luôn có giá trị dương:
(x4-2x3+6x2+x+14):(x2-3x+7)
b)Cho x+y=1.Tính giá trị biểu thức A=x3+3xy+y3
\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)
Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
Vậy ...
\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)
tìm giá trị của biểu thức Q= 2x2-3xy/x2+3y2 với 2x+y=11z và 3x-y=4z
Ta có:
\(2x+y=11z\) và \(3x-y=4z\)
Chia theo vế ta có:
\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)
\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)
\(\Leftrightarrow8x+4y=33x-11y\)
\(\Leftrightarrow15y=25x\)
\(\Leftrightarrow3y=5x\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
Thay vào Q ta có:
\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)
\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)
\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)
\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)
\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)
=>33x-11y=8x+4y
=>25x=15y
=>5x=3y
=>x/3=y/5=k
=>x=3k; y=5k
\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)
Bài 4: Chứng minh rằng các biểu thức sau luôn luôn âm với mọi giá trị của biến a) M=-x² + 6x – 12 b) N= - 3x-x2 – 4 c)P =- 3x2+ 6x+20 d) Q= - 4x2 + 8x- 9y² – 6y – 35
Cho biểu thức:
P = 2 x 4 - 1 - 1 1 - x 2
a) Tìm điều kiện xác định của biểu thức P.
b) Chứng minh giá trị của P luôn âm với x ≠ ±1
a) Ta có: x4 - 1 = (x2 + 1)(x2-1), trong đó : x2 + 1 > 0, với mọi x.
Vậy điều kiện : x2 – 1 ≠ 0
x2 – 1 = (x – 1)(x + 1) ≠ 0 ⇒ x ≠ ±1
Do x2 + 1 > 0 với mọi x nên P < 0 với mọi x ≠ ±1
cho biểu thức A = ( x - 3 ) ( x2 + 3x + 9 ) - ( x - 1 )3 + 4 ( x + 2 ) ( 2 - x ) - x
a. Chứng minh A = - x2 - 4x - 10
b. Chứng minh A luôn có giá trị âm với mọi giá trị của số thực x
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
Chứng minh biểu thức sau luôn âm −2𝑥^2+3𝑥−4
\(-2x^2+3x-4=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{23}{8}=-2\left(x-\dfrac{3}{4}\right)^2-\dfrac{23}{8}\le-\dfrac{23}{8}< 0\)
chứng minh rằng biểu thức sau luôn luôn dương ( hoặc âm ) với một giá trị của biểu thức đã cho: -a2 + a - 3
hello mik biết giải bài này nhưng bn phải viết rõ