ai làm giúp mình câu này với khó quá
x\(\sqrt{\text{3x - 2}}\) + (x + 1)\(\sqrt{5x-1}\) = 8x - 3
Mọi người giải giúp mình mấy bài này nha
a,\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\\\)
b,\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
a)\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(pt\Leftrightarrow\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(\Leftrightarrow\frac{\left(3x+1\right)^3-1}{\left(3x+1\right)\sqrt{3x+1}+1}=8x^2+5x\)
\(\Leftrightarrow\frac{\left(3x+1-1\right)\left[\left(3x+1\right)^2+3x+2\right]}{\left(3x+1\right)\sqrt{3x+1}+1}=x\left(8x+5\right)\)
\(\Leftrightarrow\frac{9x\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-x\left(8x+5\right)=0\)
\(\Leftrightarrow x\left(\frac{9\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-\left(8x+5\right)\right)=0\)
\(\Rightarrow x=0\), nghiệm còn lại khó quá t gg =))
b)\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
ĐK:\(x\ge-\frac{1}{8}\)
\(pt\Leftrightarrow9x-9=6\sqrt{8x+1}-18+4\sqrt{x+3}-8\)
\(\Leftrightarrow9\left(x-1\right)=\frac{36\left(8x+1\right)-324}{6\sqrt{8x+1}+18}+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)=\frac{288x-288}{6\sqrt{8x+1}+18}+\frac{16x-16}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)-\frac{288\left(x-1\right)}{6\sqrt{8x+1}+18}-\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}=0\)
\(\Leftrightarrow\left(x-1\right)\left(9-\frac{288}{6\sqrt{8x+1}+18}-\frac{16}{4\sqrt{x+3}+8}\right)=0\)
Suy ra x=1 là nghiệm duy nhất
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)=3}\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)=3}\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
a) x=8 hoặc x=-1
Đặt ẩn phụ
g) x=1 hoặc x=2 hoặc x=-3
Phân tích thành nhân tử rồi xét giá trị
e)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1
<=>\(2x+1-3x=\left(x+1\right)^2\)
<=>\(2x+1-3x=x^2-2x+1\)
<=> \(2x-3x-x^2+2x=1-1\)
<=> \(x-x^2=0\)
<=> \(x\left(1-x\right)=0\)
<=> \(x=0\)Hoặc \(1-x=0\)
trg hợp 1 : \(x=0\)
th2: \(1-x=0\)<=>\(x=1\)
cái đầu bài mk viết thừa số 1 ở cuối cùng nha bn >_<
Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)
Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)
\(a+b+ab=3\)
và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)
Cộng hai vế xuống ta có :
\(a^2+b^2=x+1+8-x=9\)
Theo phương trình ta lại có :
\(a+b+ab=3\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)
Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi
Ai giúp mình giải bài này với ạ!
Tìm x: (8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
Với bài này bn áp dụng bài phần tử của tập hợp nhé!
(8-4):6=129
Gọi 129 là x
X-7=59
Gọi 59 làc
Vậy phần bài này là phần tử
Đs 78/9
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1-33\)
\(\Leftrightarrow10x^2-19x=0\)
\(\Leftrightarrow x\left(10x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Ai dậy r giúp vs :33 1 câu cx đc nhé :v toàn giải pt hết nhé
1) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}.\)
2) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}\)
3) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
4) \(\left(x+17\right)\sqrt{4-x}+\left(20-x\right)\sqrt{x+1}-9\sqrt{4-x}.\sqrt{x+1}=36\)
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
câu 2 ĐK \(x\ge1\)
\(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}=0\)
<=> \(\left(5x+8\right)\left(\sqrt{2x-1}-1\right)+7x\left(\sqrt{x+3}-2\right)+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)
<=>\(\left(5x+8\right).\frac{2x-2}{\sqrt{2x-1}+1}+7x.\frac{x+3-4}{\sqrt{x+3}+2}+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)
<=> \(\sqrt{x-1}\left(\frac{2\left(5x+8\right)\sqrt{x-1}}{\sqrt{2x-1}+1}+\frac{7x\sqrt{x-1}}{\sqrt{x+3}+2}+\left(x+26\right)+10\sqrt{x-1}\right)=0\)
Với \(x\ge1\)thì cái trong ngoặc >0
=> \(x=1\)
Vậy x=1
\(a,2x^2-9x+3+\sqrt{3x^2-7x+1}=0\)
b)\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)
c)\(\text{4x^3-9x^2+7x-(3x-1)\sqrt{3x-2}=0}\)
d)\(2\sqrt{x-1}+\sqrt{5x-1}=x^2+1\)
e)\(\sqrt{x+2}+\sqrt{5x+6}+2\sqrt{8x+9}=4x^2\)
f)\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)