Chứng minh rằng hàm số bậc nhất \(y=ax+b\) đồng biến khi a > 0 và nghịch biến khi a < 0 ?
Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0
Xét hàm số bậc nhất y = ax + b (a ≠ 0) trên tập số thực R
Với hai số x 1 và x 2 thuộc R và x 1 < x 2 , ta có:
y 1 = a 1 + b
y 2 = a 2 + b
y 2 – y 1 = (a x 2 + b) – (a x 1 + b) = a( x 2 – x 1 ) (1)
*Trường hợp a > 0:
Ta có: x 1 < x 2 suy ra: x 2 – x 1 > 0 (2)
Từ (1) và (2) suy ra: y 2 – y 1 = a( x 2 – x 1 ) > 0 ⇒ y 2 > y 1
Vậy hàm số đồng biến khi a > 0
*Trường hợp a < 0:
Ta có: x 1 < x 2 suy ra: x 2 – x 1 > 0 (3)
Từ (1) và (3) suy ra: y 2 – y 1 = a( x 2 – x 1 ) < 0 ⇒ y 2 < y 1
Vậy hàm số nghịch biến khi a < 0
a, chứng tỏ hàm số y = 2x^2 đồng biến khi x > 0; nghịch biến khi x <0
b, chứng tỏ hàm số y = -x^2 đồng biến khi x > 0; nghịch biến khi x <0
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
b: Khi x>0 thì y<0
=> Hàm số nghịch biến
Khi x<0 thì y<0
=> Hàm số đồng biến
Cho hàm số y = ax = b (a ≠ 0).
a) Khi nào thì hàm số đồng biến?
b) Khi nào thì hàm số nghịch biến?
a) Hàm số đồng biến khi a > 0
b) Hàm số nghịch biến khi a < 0
Cho hàm số y = ax = b (a ≠ 0).
a) Khi nào thì hàm số đồng biến?
b) Khi nào thì hàm số nghịch biến?
a) Hàm số đồng biến khi a > 0
b) Hàm số nghịch biến khi a < 0
Chúc bạn học tốt~
1. Định nghĩa
Hàm số bậc nhất là hàm số có công thức: y=ax+by=ax+b trong đó aa và bb là các số đã cho với a≠0,xa≠0,x là biến số.
2. Sự biến thiên
Hàm số bậc nhất y=ax+b(a≠0)y=ax+b(a≠0) có tập xác định D=RD=R, đồng biến trên RR nếu a>0a>0 và nghịch biến trên RR nếu a<0a<0.
cho hàm số y=ax+b(a#0)
khi nào thì hàm số đồng biến
khi nào thì hàm số nghịch biến
Hàm số bậc nhất y=ã+b xác định với mọi giá trị của x thuộc R và có tính chất sau :
Đồng biến trên R khi a>0
Nghịch biến trên R khi a < 0
Mình cũng đang thắc mắc. Nhờ có bạn Hà Ngọc Toàn. cảm ơn bạn nha!
bài 1 : Cho hàm số y=(m2-4m+3)x2
Tìm x để :
a, Hàm số đồng biến với x>0
b, hàm số nghịch biến với x>0
Bài 2 cho hàm số y=(m2-6m+12)x2
a, chứng tỏ rằng hàm số nghịch biến khi x<0 và đồng biến khi x>0
b,Khi m=2 tìm x để y=-2
c,khi m =5 tính giá trị của y biết x=1+căn 2
d, tìm m khi x=1 và y = 5
cho hàm số \(y=2x^2\)
chứng minh rằng hàm số đồng biến khi x>0 và nghịch biến khi x<0
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
Hàm số y=ax+b . Mệnh đề nào sai ?
A : Đồng biến khi a>0
C: Đồng biến khi a bé hơn hoặc = 0
D: NGhịch biến khi a>0
B: Luôn cắt trục tung với mọi a
P/s : làm đc rồi.
Mệnh đề sai :
A: đồng biến khi a>0
tích mình đi
ai tích mình
mình tích lại
thanks
Cho hàm số y = ( \(m^2\) + 2021 ) \(x^2\). Kết luận nào sau đây đúng?
A. Hàm số nghịch biến khi x <0
B. Hàm số đồng biến khi x <0
C. Hàm số nghịch biến khi x > 0
D. Hàm số đồng biến khi x \(\le\) 0