Giải phương trình: 4 3 2
x x x x x x 1 3 4 7 12 14
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
giải các phương trình sau: 1. 4x-12=0 2. x(x+1)-(x+2)(x-3)=7 3. 7+2x=22-3x 4.(x-1)-(2x-1)=9-x
1. 4x-12=0
<=>4x=12
<=>x=3
2. x.(x+1)-(x+2)(x+3)=7
<=>x2+x-x2-3x-2x-6=7
<=>x2-x2+x-2x-3x=7+6
<=>-4x=13
<=>x=\(-\dfrac{13}{4}\)
3. 7+2x=22-3x
<=>2x+3x=22-7
<=>5x=15
<=>x=3
4. (x-1)-(2x-1)=9-x
<=>x-1-2x+1=9-x
<=>x-2x+x=9+1-1
<=>0x=9
vô nghiệm
Giải các phương trình sau:
\(a.\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(b.\dfrac{7}{x+2}=\dfrac{3}{x-5}\)
\(c.\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
\(d.\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
. Tìm cặp phương trình tương đương a) 4x – 7 = 12x + 5 và 2x – 1 = 6x + 5 b) 7(x 10) = 12 và 14(x 10) = 24. c) 4 4 3 x x 3 x 3 và 3x 9 0
Đề hơi khó hiểu nhưng vẫn biết cách làm !!!
Bài giải
a) +)Ta có : 4x - 7 = 12x +5
=> 4x - 12x = 5 + 7
<=> -8x = 12
<=> x =\(\frac{-12}{8}=\frac{-3}{2}\)
+)Ta có : 2x -1 = 6x + 5
<=> 2x - 6x = 5 + 1
<=> -4x = 6
<=> x = \(\frac{-6}{4}=\frac{-3}{2}\)
=> đây là cặp phương trình tương đương .
b) +) 7.( x - 10 ) =12
+) 14 . ( x - 10 ) = 24
<=> \(\frac{1}{2}.\left[14.\left(x-10\right)\right]=\frac{1}{2}.24\)
<=>7 . ( x - 10 ) = 12
=> Đây là 2 phương trình tương đương .
c) +) \(\frac{4}{x+3}-3=\frac{4}{x+3}+x.\left(ĐK:x\ne-3\right)\)
<=> \(\left(\frac{4}{x+3}-\frac{4}{x+3}\right)-3=x\)
<=> 0 - 3 = x
<=>x = 3
+) Với x= -3 => x + 3 = 0
=> ko thỏa mãn
=> ko xét tính tương đương
Giải phương trình\(\dfrac{1}{x+2}+\dfrac{6x+12}{x^3+8}-\dfrac{7}{x^2-2x+4}=0\)
\(\dfrac{1}{x+2}+\dfrac{6x+12}{x^3+8}-\dfrac{7}{x^2-2x+4}=0\) \(\left(đk:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{x^2-2x+4+6x+12-7\left(x+2\right)}{x^3+8}=0\)
\(\Leftrightarrow\dfrac{x^2-3x+2}{x^3+8}=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(TM)
Vậy ...
dk : x khac -2
\(\Rightarrow x^2-2x+4+6x+12-7\left(x+2\right)=0\)
\(\Leftrightarrow x^2+4x+16-7x-14=0\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)
Giải hẹ phương trình:
\(\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\)
\(\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\)
\(\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\end{matrix}\right.\left(x\ne1;y\ne-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x-2+8}{x-1}+\dfrac{3y+9+5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2\left(x-1\right)}{x-1}+\dfrac{8}{x-1}+\dfrac{3\left(y+3\right)}{y+3}+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\2+\dfrac{8}{x-1}+3+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{8}{x-1}+\dfrac{5}{y+3}=13\end{matrix}\right.\) (I)
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{x-1}\\v=\dfrac{1}{y+3}\end{matrix}\right.\)
Hệ (I) trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7v=19\\8u+5v=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24u+14v=38\\24u+15v=39\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7=19\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u=12\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
Trả ẩn phụ:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=1\\\dfrac{1}{y+3}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x−2+8x−1+3y+9+5y+3=18⇔{12�−1+7�+3=192�−2+8�−1+3�+9+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192+8x−1+3+5y+3=18⇔{12�−1+7�+3=192+8�−1+3+5�+3=18
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩u=1x−1v=1y+3{�=1�−1�=1�+3
Hệ (I) trở thành:
⇔{12u+7v=198u+5v=13⇔{12�+7�=198�+5�=13
⇔{24u+14v=3824u+15v=39⇔{24�+14�=3824�+15�=39
⇔{12u+7=19v=1⇔{12�+7=19�=1
⇔{12u=12v=1⇔{12�=12�=1
⇔{u=1v=1⇔{�=1�=1
Trả ẩn phụ:
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Bài 1: Giải các phương trình sau:
a) 2(x - 4) = x + 3.( 2x - 7) + 11
b) 7 - (x - 6) = 4(1 - 2x)
c) 11 - (x + 4) = -(2x + 4)
d) (1 - 5x)(x + 3) = (2x+3)(x-1)-7x2
e) x(x+2)-8x=(x-2)(x-4)