Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kotori Minami
Xem chi tiết
Quỳnh Như
24 tháng 7 2017 lúc 22:25

a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)

\(=4a^2+4b^2+4c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

Quỳnh Như
24 tháng 7 2017 lúc 22:34

b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)

\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)

\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)

\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)

\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(=3.2a.2b.2c\)

\(=24abc\) (đpcm)

Ninh khùng độc ác
24 tháng 7 2017 lúc 22:08

a, \(VP=\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)

\(=\left(a^2+b^2+c^2+ab+bc+ac\right)+\left(a^2+b^2+c^2+bc-ab-ac\right)+\left(a^2+b^2+c^2+ac-ab-bc\right)+\left(a^2+b^2+c^2+ab-ac-bc\right)\)\(=4a^2+4b^2+4c^2+\left(ab-ab-ab+ab\right)+\left(bc+bc-bc-bc\right)+\left(ac-ac+ac-ac\right)\)

\(VP=4\left(a^2+b^2+c^2\right)\)

So VP với VT ta thấy: \(VP=VT=4\left(a^2+b^2+c^2\right)\)

=> đpcm.

Bài đó cm tương tự h buồn ngủ quá

Phạm huy hoàng
Xem chi tiết
😈tử thần😈
4 tháng 9 2021 lúc 13:08

a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)

\(=2ab+2b^2=2b\left(a+b\right)\)

c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=2b.2a=4ab\) 

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 13:10

a: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-a+b\right)\)

\(=2b\left(a+b\right)\)

c: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)

\(=4ab\)

Duyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 6 2020 lúc 20:43

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

Khách vãng lai đã xóa
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
__HeNry__
Xem chi tiết
Nguyễn Thanh Hằng
3 tháng 10 2018 lúc 20:21

Hỏi đáp Toán

Khôi Bùi
3 tháng 10 2018 lúc 20:21

a ) \(VT=\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)\)

\(=\left[\left(2x+3\right)\left(2x-3\right)\right]\left(4x^2+9\right)\)

\(=\left(4x^2-9\right)\left(4x^2+9\right)\)

\(=16x^4-81=VP\left(đpcm\right)\)

b ) \(VT=\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\)

\(=\left(a+b+a-b\right)^2\)

\(=\left(2a\right)^2=4a^2=VP\left(đpcm\right)\)

Deal With It
Xem chi tiết
TÔi NgU xi
27 tháng 5 2017 lúc 13:31

cố gắng là làm được

Đỗ Thành Nam
27 tháng 5 2017 lúc 13:40

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

hoaan
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 22:07

a)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

b)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

phung the thang
Xem chi tiết