Chứng minh các đẳng thức sau :
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
b) \(\left(-a-b\right)^2=\left(a+b\right)^2\)
Chứng minh các đẳng thức sau:
a) \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)
\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(=3.2a.2b.2c\)
\(=24abc\) (đpcm)
a, \(VP=\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=\left(a^2+b^2+c^2+ab+bc+ac\right)+\left(a^2+b^2+c^2+bc-ab-ac\right)+\left(a^2+b^2+c^2+ac-ab-bc\right)+\left(a^2+b^2+c^2+ab-ac-bc\right)\)\(=4a^2+4b^2+4c^2+\left(ab-ab-ab+ab\right)+\left(bc+bc-bc-bc\right)+\left(ac-ac+ac-ac\right)\)
\(VP=4\left(a^2+b^2+c^2\right)\)
So VP với VT ta thấy: \(VP=VT=4\left(a^2+b^2+c^2\right)\)
=> đpcm.
Bài đó cm tương tự h buồn ngủ quá
Chứng minh đẳng thức sau :
a) \(x^2+y^2=\left(x+y\right)^2-2xy\)
b)\(\left(a+b\right)^2-\left(a-b\right)\cdot\left(a+b\right)=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=ab\)
a) \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
b) \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)^2-\left(a^2-b^2\right)=a^2+2ab+b^2-a^2+b^2\)
\(=2ab+2b^2=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=2b.2a=4ab\)
a: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)
b: \(\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-a+b\right)\)
\(=2b\left(a+b\right)\)
c: \(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\)
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
Chứng minh đẳng thức sau đúng với mọi giá trị thích hợp của biến
\(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)
Chứng minh đẳng thức sau đúng với mọi giá trị thích hợp của biến
\(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)
Chứng minh các đẳng thức sau
a) \(\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)=16x^4-81\)
b) \(\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2=4a^2\)
a ) \(VT=\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)\)
\(=\left[\left(2x+3\right)\left(2x-3\right)\right]\left(4x^2+9\right)\)
\(=\left(4x^2-9\right)\left(4x^2+9\right)\)
\(=16x^4-81=VP\left(đpcm\right)\)
b ) \(VT=\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a+b+a-b\right)^2\)
\(=\left(2a\right)^2=4a^2=VP\left(đpcm\right)\)
1.Chứng tỏ các đa thức sau không phụ thuộc vào biến x
a)\(x\cdot\left(2x+1\right)-x^2\left(x\cdot2\right)+\left(x^3-x+3\right)\)
b)\(4\cdot\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
2.Chứng minh đẳng thức sau :
a)\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)
b)\(a\left(1-b\right)+a\left(a^2-1\right)=a\left(a^2-b\right)\)
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
Chứng minh các hằng đẳng thức : a, \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b, \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
a) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
Chứng minh các bất đẳng thức sau:
a) \(3\left(a^3+b^3+c^3\right)\)\(\ge\)\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
b) \(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)