Tìm GTNN của \(I=\dfrac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTNN của BT sau: \(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
\(S=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\)
\(=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
=> MIN S = 2
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Min S = 2 khi x = 2
Tìm GTNN của các biểu thức sau
A=\(\dfrac{2}{6x-5-9x^2}\)
B=\(\dfrac{4x^2-6x+3}{2x^2-3x+2}\)
C=\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
GIÚP MÌNH 3 CÂU NÀY VỚI MÌNH CẢM ƠN!!!
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
tìm gtnn của s=3x^2+8x+6/x^2+2x+1
\(S=\dfrac{3x^2+8x+6}{x^2+2x+1}=\dfrac{-2\left(x^2+2x+1\right)+x^2+4x+4}{x^2+2x+1}=-2+\left(\dfrac{x+2}{x+1}\right)^2\ge-2\)
\(S_{min}=-2\) khi \(x=-2\)
Tìm GTNN của biểu thức
A=\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
B=\(\dfrac{x^2+2x+10}{x^2}\)
tìm GTNN của biểu thức: (3x^2 -8x +6)/(x^2 -2x +1)
\(\frac{3x^2-8x+6}{x^2-2x+1}\)
=\(\frac{2x^2-x^2-4x-4x+2+4}{x^2-2x+1}\)
=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)
=\(\frac{2\left(x^2-2x+1\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)
=\(2+\frac{x^2-4x+4}{\left(x-1\right)^2}\)
=\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\)
Vì \(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\) với mọi x
<=>\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) > 2 với mọi x
Dấu "=" xảy ra khi và chỉ khi x=-2 thì Min =2
Vậy Min=2
Tìm GTNN B=3x^2 - 8x + 6/x^2 - 2x + 1
A.Tìm GTNN của biểu thức A=x^4-2x^2y+2x^2+3y^2-6y+2029
B.Tìm GTNN của A=3x^2-8x+6/x^2-2x+1
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
tìm GTNN của phân thức \(\frac{3x^2+8x+6}{x^2+2x+1}\)
Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)
\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)
Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.
Tìm GTNN của biểu thức: \(\frac{3x^2-8x+6}{x^2-2x+1}\)
Ta có:
\(A=\frac{3x^2-8x+6}{x^2-2x+1}\)
\(\Leftrightarrow A\left(x^2-2x+1\right)=3x^2-8x+6\)
\(\Leftrightarrow\left(3-A\right)x^2+\left(2A-8\right)x+6-A=0\)
Đê pt theo nghiệm x có nghiệm thì
\(\Delta'=\left(A-4\right)^2-\left(3-A\right)\left(6-A\right)\ge0\)
\(\Leftrightarrow A-2\ge0\)
\(\Leftrightarrow A\ge2\)
Vậy GTNN là 2 khi x = 2
bn giải cách lớp 8 đi