Cho \(x,y,z\ge0\)thỏa mãn \(x+y+z=2\) . Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
cho x y z 0 thỏa mãn x+y+z=2. Tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
We have:
\(P=\Sigma_{cyc}\sqrt{2x+yz}\le\sqrt{3\left[2\left(x+y+z\right)+\Sigma_{cyc}xy\right]}\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=4\)
Sign '=' happen when \(x=y=z=\frac{2}{3}\)
Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
Cho các số dương x,y,z thỏa mãn điều kiện x+y+z = 2020
Tìm giá trị nhỏ nhất của biều thức \(T=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Ta có:
\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Gợi ý. Dùng cái trên.
Cho x,y,z>0 thỏa mãn x+y+z=2. Tìm giá trị lớn nhất của P=\(\sqrt{2x}+yz+\sqrt{2y}+xz+\sqrt{2z}+xy\)xy
Cho x,y,z >0 thỏa mãn x+y+z = 2. Tìm GTLN của biểu thức
\(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)
Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)
\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)
P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)
\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)
Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx
=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)
Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)
= 4
Dấu "=" xảy ra <=> x = 2/3
Cho x,y,z >0 thỏa mãn \(x+y+z=2\) . Tìm GTLN của biểu thức \(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)
P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)
\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)
\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4
Dấu "=" xảy ra <=> x = y = z = 2/3
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).
\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).
Ta có:
\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)
\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).
Ta có:
\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).
\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).
\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).
\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).
\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).
Chứng minh tương tự, ta được:
\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).
Chứng minh tương tự, ta được:
\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).
\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).
\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)
\(\left(4\right)\).
Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).
\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)
(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).
\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(P\ge\frac{\sqrt{5}}{3}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).
Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).
cho x, y,z >0 thỏa mãn x+y+z=2 , tìm giá trị lớn nhất của P
\(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+yx}\)
Áp dụng bất đẳng thức Bunhiacopxki:
\(P^2\le\left(1^2+1^2+1^2\right)\left(2x+2y+2z+xy+yz+xz\right)=3\left(4+xy+yz+xz\right)\)
Mặt khác ta có : \(xy+yz+xz\le x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}=\frac{4}{3}\) (Dấu "=" xảy ra khi x=y=z=2/3)
=> \(P\le\sqrt{3\left(4+\frac{4}{3}\right)}=4\)khi x=y=z=2/3
Vậy Max P = 4 <=> x=y=z=2/3
hjhhogf hgghi huiio
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Ta có:
\(2x^2+xy+2y^2=x^2+y^2+\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2\)
\(\ge\frac{2\left(x+y\right)^2}{4}+\frac{3\left(x+y\right)^2}{4}=\frac{5\left(x+y\right)^2}{4}\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\). Tương tự ta có:
\(\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right);\sqrt{2z^2+xz+2x^2}\ge\frac{\sqrt{5}}{2}\left(x+z\right)\)
\(\Rightarrow M\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(x+z\right)\)
\(=\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho mình hối tại sao đẳng thức sảy ra x=y=z=1/3 vậy
Dấu = khi \(\hept{\begin{cases}x=y=z\\x+y+z=1\end{cases}\Rightarrow}x=y=z=\frac{1}{3}\)