Chứng tỏ rằng nếu a và c cùng dấu thì đa thức: f(x)= a(x - 2003)^2 + c vô nghiệm
hãy chứng minh: nếu a và c cùng dấu thì đa thức a(x+2003)2+c vô nghiệm
chứng tỏ rằng nếu a và c cùng dấu thì đa thức:
f(x) = \(a\left(x-2003\right)^2\) vô nghiệm
vì \(\left(x-2003\right)^2\ge\) 0 với mọi x
nên ta có hai trường hợp:
TH1: nếu a và c cùng là số âm thì \(a\left(x-2003\right)^2+c\le c< 0\)
\(\Rightarrow\)f(x) vô ngiệm.
TH2: nếu a và c cùng là số dương thì \(a\left(x-2003\right)^2+c\ge c>0\)
\(\Rightarrow\)f(x) vô nghiệm.
vậy nếu a và c cùng dấu thì đa thức f(x) vo nghiệm
mình chép thiếu, đề bài là:
chứng tỏ rằng nếu a và c cùng dấu thì đa thức:
f(x) = \(a\left(x-2003\right)^2+c\)Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
cho đa thức f(x)=a(x-2009)2+b
a, tìm a và b biết f(2009)=-15 và f(2020)=348
b, tìm nghiệm của đa thức f(x) với a,b vừa tìm được
c, CM nếu a, b cùng dấu thì f(x) vô nghiệm
Chứng tỏ rằng : a+b+c=0 thì x=1 là nghiệm của đa thức f(x)=ax2+bx+c
Ngoài ra nếu a#0 thì x=c/a là nghiệm của đa thức f(x).
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
Câu 13. (1,0 điểm) Cho đa thức f(x) = ax2 + bx + c.
a) Chứng tỏ rằng nếu a + b + c = 0 thì đa thức f(x) có một nghiệm x = 1.
b) Áp dụng tìm một nghiệm của đa thức: f(x) = 5x2 – 6x + 1
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
Cho đa thức f(x) = ax2 + bx + c.
Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức f(x)
Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được :
\(f\left(x\right)=a.1^2+b.1+c\)
\(f\left(x\right)=a+b+c\)
Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)
Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)
Chúc bạn học tốt ~
a, Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức P(x) = ax2 + bx + c
b, Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức Q(x) = ax2 + bx + c
$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$
Cho đa thức f(x) = ax2 + bx + c . Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức đó .
Để x=1 là một nghiệm của f(x)
thì f(1)=a.12+b.1+c=0
=>a+b+c=0
Vậy .........