Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Duy Thành
Xem chi tiết
Nguyễn Đức Trí
1 tháng 9 2023 lúc 20:41

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)

\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)

b) \(2n+7⋮n+1\left(n\inℤ\right)\)

\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)

c) \(xy+x-y=6\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y+1\right)-y-1+1=6\)

\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

Super anh DZ
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 14:01

\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)

Hiếu Lê Đức
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

Phạm Ngọc Tú
Xem chi tiết
Lê Nguyên Hạo
15 tháng 8 2016 lúc 14:32

Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

a) Ta có 1 là số nguyên, để \(\frac{3}{n-2}\) là số nguyên thì 3 chia hết cho n - 2.

<=> n - 2 thuộc Ư(3) = {1;2;-1;-2}

=> n thuộc {3;4;1;0}

b) Để A lớn nhất thì n - 2 = 1 (nếu không có 1 thì những số lớn hơn 1) 

=> n - 2 = 1

=> n = 3

Vậy GTLN của n = 3

Nguyễn Phương HÀ
15 tháng 8 2016 lúc 14:38

a) A=\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

muốn A nguyên thì n-3=Ư(3)={-1,-3,1,3}

n-2=-1=> n=1

n-2=1=> n=3

n-2=-3=> n=-1

n-2=3=> n=5

=> kl cvos 4 gtri n thỏa:....

b) A=1+\(\frac{3}{n-2}\)

=> muốn A lớn nhất thì \(\frac{3}{n-2}\)lớn nhất

có : \(\frac{3}{n-2}>=3\) khi n nguyên

=> dấu = dảy ra khi n=3

vậy GTLN A=1+3=4 khi x=3

Nguyen Thi Mai
15 tháng 8 2016 lúc 14:43

a) Ta có: \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để A là số nguyên thì 3 phải chia hết cho n - 2

=> n - 2 thuộc Ư(3) = { 1 ; 3 ; - 1 ; - 3 }

=> n thuộc { 3 ; 5 ; 1 ; - 1 }

Vậy n thuộc { 3 ; 5 ; 1 ; - 1 }

☆MĭηɦღAηɦ❄
Xem chi tiết
Trần Thanh Phương
18 tháng 8 2018 lúc 12:19

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

Trần Thanh Phương
18 tháng 8 2018 lúc 12:24

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

Dương Lam Hàng
18 tháng 8 2018 lúc 12:27

a) \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Nêu n-2=1 thì n=3

Nếu n-2=-1 thì n=1

Nếu n-2=3 thì n=5

Nếu n-2=-3 thì n = -1

Vậy....

b) Để A đạt GTLN thì \(\frac{3}{x-2}\) đạt giá trị dương lớn nhất

=> x -  2 đạt giá trị dương nhỏ nhất

=> x - 2 = 1 => x = 3

Bùi Đức Minh
Xem chi tiết
Nguyễn Khánh Duyên
Xem chi tiết
Ngô Tấn Đạt
18 tháng 8 2016 lúc 8:57

\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)

=>n-2 thuộc Ư(3)={1;3;-1;-3}

=>n thuoc {3;5;1;-1}

b) A có GTLN khi n lớn nhất =>n=5

Câu b không chắc chắn

Ngô Linh
Xem chi tiết