a: Ta có: \(N=\dfrac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\dfrac{2-\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{4\sqrt{x}-7+4-x-2x+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+5\sqrt{x}-4}{x+\sqrt{x}-2}\)
a: Ta có: \(N=\dfrac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\dfrac{2-\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{4\sqrt{x}-7+4-x-2x+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+5\sqrt{x}-4}{x+\sqrt{x}-2}\)
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
Cho \(B=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)
a.Rút gọn.
b.Tìm x∈Z để B nguyên.
c.Tìm x để B đạt GTLN.Tính GTLN của B.
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}\)
a) Rg A
b) Tính A khi x=9; x=7-\(4\sqrt{3}\)
c) Tìm x ϵ Z để A có giá trị nguyên
d) Tìm x để A=\(\dfrac{1}{\sqrt{x}}\); A=-2
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
Cho \(B=\dfrac{2}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Tìm \(x\in Z\) để B có giá trị nguyên
Cho x,y,z > 0 tm : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\) . Tính giá trị nhỏ nhất của bt
\(P=\dfrac{\sqrt{2x^2+y^2}}{xy}+\dfrac{\sqrt{2y^2+z^2}}{yz}+\dfrac{\sqrt{2z^2+x^2}}{xz}\)
2 , gpt
\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
3, tìm stn n để \(A=n^{2012}+n^{2002}+1\) là số nguyên tố
Chứng minh bất đẳng thức
Cho x, y, z là các số dương (chứng minh hộ mình phần b) thôi)
a) CMR : \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) Cho x, y, z thỏa mãn : \(3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=12\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
CMR : \(\dfrac{1}{4x+y+z}+\dfrac{1}{x+4y+z}+\dfrac{1}{x+y+4z}\le\dfrac{1}{6}\)