Cho 3a + 2b chia hết 17 . C/m 10a + b chia hết 17
Cho 10a + b chia hết cho 17 c/m 3a+2b chia hết 17
Cho a , b là các số nguyên. C/m : 3a + 2b chia hết cho 17 khi và chỉ khi 10a + b chia hết cho 17
Chứng minh rằng:
a) Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
b) Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Chứng minh rằng:
a) 2x + 3y chia hết cho 17 ↔ 9x + 5y chia hết cho 17
b) a + 4b chia hết cho 13 ↔ 10a + b chia hết cho 13
c) 3a + 2b chia hết cho 17↔10a + b chia hết cho 17
a) 2x+3y chia hết cho 17 => 4(2x+3y) chia hết cho 17
=> 8x+12y chia hết cho 17
Ta có : 8x+12y+9x+5y=17x+17y=17(x+y) chia hết cho 17
b) a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13 => 3a+12b chia hết cho 13
=> (3a+12b)+(10a+b)=13a+13b=13(a+b) chia hết cho 13
c) 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17 => 24a+16b chia hết cho 17
Ta có : (24a+16b)+(10a+b)=34a+17b chia hết cho 17
Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17.
\(3a+2b⋮17\\ \Rightarrow\left\{{}\begin{matrix}3a⋮17\\2b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮17\\b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}10a⋮17\\b⋮17\end{matrix}\right.\\ \Rightarrow10a+b⋮17\)
cmr
2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
a+4b chia hết cho 13 thì 10a+b chia hết cho 13
3a+2b chia hết cho 17 thì 10a+b chia hết cho 17
a-5b chia hết cho 17 thì 10a+b chia hết cho 17
m+4n chia hết cho 13 thì 10m+n chia hết cho 13
Nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17 và ngược lại.
Nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17 và ngược lại.
Cho a,b thuoc .Chứng minh rằng:
1)3a+2b chia hết cho 17<=>10a+b chia hết cho 17
2)a-5b chia hết cho 17<=>10a+b chia hết cho 17
Cho 3a+2b chia hết cho 17. CMR 10a+b chia hết cho 17
\(\left(3a+2b\right)⋮17\Leftrightarrow9\left(3a+2b\right)⋮17\Leftrightarrow\left(27a-17a+18b-17b\right)⋮17\)
\(\Leftrightarrow\left(10a+b\right)⋮17\).