Chứng minh phân số sau tối giản
2n+1005/4n+2001
chứng tỏ: 2n+1005/4n+2001 là p/số tối giản
=>UCLN(2n+1005,4n+2001)=1
gọi d la UC(2n+1005,4n+2001)
=>2n+1005 chia hết cho d và 4n+2001 chia hết cho d
=>4n+2010 chia hết cho d và 4n+2001 chia hết cho d
=>4n+2010-4n-2001 chia het cho d
=>9 chia het cho d
=> de bai cho sai roi
Cho n thuộc N ,chứng tỏ phân số 2n+1005/4n+2011 là phân số tối giản
Giúp tớ với ạ !!
Gọi ƯCLN(2n+1005;4n+2011)=d(\(d\in\)N*)
\(\Rightarrow2n+1005⋮d\Rightarrow4n+2010⋮d\Rightarrow4n+2011-4n-2010⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
gọi d là ƯC(2n+1005,4n+2011)(d\(\in\)N*)
theo bài ra ta có
2n+1005\(⋮\)d\(\Rightarrow\)2(2n+1005)\(⋮\)d\(\Rightarrow\)4n+2010\(⋮\)d
4n+2011\(⋮\)d
\(\Rightarrow\)(4n+2011)-(4n+2010)\(⋮\)d
\(\Rightarrow\)4n+2011-4n+2010\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
vậy với mọi n \(\in\)N thì \(\dfrac{2n+1005}{4n+2011}\) là phân số tối giản
1 . Cho n thuộc N , chứng tỏ phân số 2n + 1005 / 4n + 2011 luôn tối giản
Chứng minh các phân số sau là phân số tối giản:
a) 2n + 1 / 2n + 3
b) 2n + 3 / 4n + 1
a) Ta có:\(\frac{2n+1}{2n+3}\)là phân số tối giản
Mà: 2n chia hết cho 2n
1 không chia hết cho 3
=>\(\frac{2n+1}{2n+3}\)là phân số tối giàn (phân số tối giản là phân số có tử và mẫu là hai số nguyên tố cùng nhau ko có ước chung)
chứng minh các phân số sau là tối giản( nϵN)
a)\(\dfrac{n+1}{2n+3}\) b) \(\dfrac{2n+3}{4n+8}\)
Chứng minh phân số sau tối giản n thuộc N
2n+1/4n+1
2n+1/4n+1
Gọi d là ƯC của 2n+1 và 4n+1
=> d=2n+1 :4n+1
=> (2n+1: 4n+1 ): d
=>[ 2.(2n+1)-1.(4n+1)]
=>4n+2-4n-1
=>d=1
Vậy phân số trên là phân số tối giản
Bài 15: Chứng minh rằng các phân số sau là tối giản(n∈ N*)
a) \(\dfrac{n+1}{2n+3}\) . b) \(\dfrac{2n+3}{4n+8}\) .
c) \(\dfrac{3n+1}{4n+1}\) .
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.
chứng minh rằng phân số sau đây là phân số tối giản
a/ n+1/2n+3
b/ 2n+3/4n+8
Goi d la UC(n+1,2n+3)
Ta co:n+1:d suy ra 2(n+1):d suy ra 2n+2 :d
Va 2n+3:d
suy ra 2n+3-(2n+2)
2n+3-2n-2:d
1:d suy ra d thuoc U(1)=(1;-1)
suy ra (2n+2,2n+3)=1
Vi 2n+2 va 2n+3 co 2 uoc la 1va -1
nen phan so n+1/2n+3 toi gian
Chứng minh các phân số sau tối giản : a ) n/2n+1 b ) 2n+3/4n+8 c ) 3n+2/5n+3 d ) 2n+1/6n+5
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
c) \(\frac{3n+2}{5n+3}\)
Gọi \(d=ƯCLN\left(3n+2;5n+3\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)Phân số \(\frac{3n+2}{5n+3}\)là phân số tối giản