Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 13:47

Giải bài 90 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Vẽ hình vuông ABCD có cạnh 4cm.

b) Vẽ hai đường chéo AC và BD. Chúng cắt nhau tại O.

Đường tròn (O; OA) là đường tròn ngoại tiếp hình vuông ABCD.

Ta có:

Giải bài 90 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9 (cm)

⇒ R = OA = AC/2 = 2√2 (cm).

c) Gọi H là trung điểm AB.

(O ; OH) là đường tròn nội tiếp hình vuông ABCD.

r = OH = AD/2 = 2cm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2018 lúc 11:25

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Chọn điểm O là tâm, mở compa có độ dài 2cm vẽ đường tròn tâm O, bán kính 2cm.

b) Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O; 2cm).

c) Vẽ OH ⊥ BC.

⇒ OH là khoảng cách từ từ tâm O đến BC

Vì AB = BC = CD = DA ( ABCD là hình vuông) nên khoảng cách từ tâm O đến AB, BC, CD, DA bằng nhau ( định lý lien hệ giữa dây cung và khoảng cách từ tâm đến dây)

⇒ O là tâm đường tròn nội tiếp hình vuông ABCD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

Tam giác vuông OBC có OH là đường trung tuyến ⇒ Giải bài tập Toán 9 | Giải Toán lớp 9

Xét tam giác vuông OHB có:  r 2 + r 2 = O B 2 = 2 2 ⇒ 2 r 2 = 4 ⇒ r 2 = 2 ⇒ r = 2 ( cm )

Vẽ đường tròn (O; OH). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh.

Kiến thức áp dụng

+ Đường tròn ngoại tiếp đa giác nếu đường tròn đó đi qua tất cả các đỉnh của đa giác. Khi đó ta nói đa giác nội tiếp đường tròn.

+ Đường tròn nội tiếp đa giác là đường tròn tiếp xúc với tất cả các cạnh của đa giác. Khi đó ta nói đa giác ngoại tiếp đường tròn.

Sách Giáo Khoa
Xem chi tiết

a) Chọn điểm O làm tâm , mở compa có độ dài 2cm vẽ đường tròn tâm O, bán kính 2cm: (O; 2cm)

Vẽ bằng eke và thước thẳng.

b) Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O;2cm)

c) Vẽ OH ⊥ AD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

r = OH = AH.

r2 + r2 = OA2 = 22 => 2r2 = 4 => r = √2 (cm)

Vẽ đường tròn (O;√2cm). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh



Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2019 lúc 8:21

 

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ OH ⊥ BC.

⇒ OH là khoảng cách từ từ tâm O đến BC

Vì AB = BC = CD = DA ( ABCD là hình vuông) nên khoảng cách từ tâm O đến AB, BC, CD, DA bằng nhau ( định lý lien hệ giữa dây cung và khoảng cách từ tâm đến dây)

⇒ O là tâm đường tròn nội tiếp hình vuông ABCD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

Tam giác vuông OBC có OH là đường trung tuyến ⇒ Giải bài tập Toán 9 | Giải Toán lớp 9

Xét tam giác vuông OHB có: r2 + r2 = OB2 = 22 ⇒ 2r2 = 4 ⇒ r2 = 2 ⇒ r = √2(cm)

Vẽ đường tròn (O; OH). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh.

 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
8 tháng 6 2017 lúc 14:08

Đường tròn nội tiếp. Đường tròn ngoại tiếp

Đường tròn nội tiếp. Đường tròn ngoại tiếp

Hồ Quốc Khánh
Xem chi tiết
Ai là bạn cùng lớp tôi t...
22 tháng 3 2016 lúc 7:22

Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10

Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2

AB2+AC2=100 (Pytago)

Giải pt ra, ta được: (AB;AC)=(6;8)

=> AB+AC=14

Thái Dương Lê Văn
21 tháng 3 2016 lúc 22:11

bằng 14 nha !

Bùi Thị Phương Anh
Xem chi tiết
Hoàng Trọng Tấn
Xem chi tiết
Cô Hoàng Huyền
15 tháng 12 2018 lúc 14:33

a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.

b) Xét tam giác vuông ACB, ta có:

\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)

Xét tam giác vuông ACB, ta có:

\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)

Xét tam giác vuông ABD, ta có:

\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)

c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.

Vậy O' là trung điểm BD.

Xét tam giác OCO' và OBO' có:

O'C = O'B (gt)

OC = OB (= R)

OO' chung

\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)

\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)

Vậy nên O'C là tiếp tuyến của đường tròn (O).

Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').

d) Gọi H là hình chiếu của I trên OB.

\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)

Ta có hai công thức tính diện tích tam giác:

Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi

\(S=pr\) với r bán kính đường tròn nội tiếp.

Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)

\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)

Vậy thì:

\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)

Thấy ngay IH = r.

Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\)  (Do BI là phân giác góc vuông)

Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)

\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)

Xét tam giác vuông OIH, ta có: 

\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)

hsdfgsd
14 tháng 2 2019 lúc 19:19

a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.

b) Xét tam giác vuông ACB, ta có:

\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)

Xét tam giác vuông ACB, ta có:

\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)

Xét tam giác vuông ABD, ta có:

\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)

c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.

Vậy O' là trung điểm BD.

Xét tam giác OCO' và OBO' có:

O'C = O'B (gt)

OC = OB (= R)

OO' chung

\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)

\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)

Vậy nên O'C là tiếp tuyến của đường tròn (O).

Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').

d) Gọi H là hình chiếu của I trên OB.

\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)

Ta có hai công thức tính diện tích tam giác:

Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi

\(S=pr\) với r bán kính đường tròn nội tiếp.

Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)

\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)

Vậy thì:

\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)

Thấy ngay IH = r.

Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\)  (Do BI là phân giác góc vuông)

Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)

\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)

Xét tam giác vuông OIH, ta có: 

\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)

hsdfgsd
14 tháng 2 2019 lúc 19:20

thiếu cái hình:v

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2019 lúc 11:59