Chứng minh bđt \(a^2+b^2+c^2\ge ab+bc+ca\)
chứng minh các BĐT:
a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2;\)
b)\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
a) Áp dụng Cauchy-Schwarz:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
b) Áp dụng AM-GM:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)
Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
a)2(a2+b2) ≥ (a+b)2
⇔ 2a2+2b2 ≥ a2+2ab+b2
xét hiệu
⇔ 2a2+2b2-a2-2ab-b2 ≥ 0
⇔ a2-2ab+b2 ≥ 0
⇔ (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab
\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0
\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)
(2) đúng nên 1 đúng
b )
chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2
\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0
\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0
\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng
chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)
\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0
cm như trên suy ra đpcm
Chứng minh: BĐT: \(\left(a+b+c\right)^2\ge3.\left(ab+bc+ca\right)\)
Mạnh hơn BĐT Schur
Cho a,b,c là các số thực không âm,chứng minh rằng:
\(a^3+b^3+c^3\ge\frac{\left(ab^2+bc^2+ca^2\right)^2}{a^2b+b^2c+c^2a}+\frac{\left(a^2b+b^2c+c^2a\right)^2}{ab^2+bc^2+ca^2}\)
Ở đây chúng tôi không SOS hay ST s o s cái gì hết :P
Cho a = b = c = 1 thử xem:P
Chứng minh BĐT :
Với mọi số thực a,b,c bất kỳ :a^2+b^2+c^2 lớn hơn hoặc bằng ab+bc+ca
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
Cho a, b, c>0
Chứng minh rằng: (a+b+c)^2\(\ge\) 3(ab+bc+ca) và ((a+b+c)^2/ab+bc+ca)+(ab+bc+ca/(a+b+c)^2)\(\ge\) 10/3
Biến đổi tương đương:
\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)
b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
1. chứng minh bđt
a. \(a^2+b^2+c^2\ge ab+ac+bc\)
b.\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)
c.\(a^2+b^2+c^2\ge a\left(b+c\right)\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(a^2+c^2\ge2ac\)
\(b^2+c^2\ge2bc\)
Cộng theo từng về 3 bđt trên ta đc:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Xảy ra dấu đt khi \(a=b=c\)
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Xảy ra dấu đẳng thức khi \(a=b\)
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)
Xảy ra đẳng thức khi \(a=b=c=0\)
Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Dấu bằng tại a=b
Cho `a,b,c>=0`
`a)CM:(a(b+c))/(a^2+bc)+(b(c+a))/(b^2+ca)+(c(a+b))/(c^2+ab)>=2`
Chứng minh giúp mình BĐT cổ xưa này với!!
chứng minh BĐT
\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{9}{2}\)
Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:
\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)
Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)
Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)
Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)
Có:
\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)
\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)
\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)
\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)
\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)
Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)
Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)
Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)
Ta có đpcm.
Dấu bằng xảy ra khi $a=b=c$
Cho 3 số thực dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh rằng: \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}.\)
(Chứng minh BĐT dựa vào BĐT Cauchy)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)