Cho `a,b,c>=0` `b)CM:sqrt{(a(b+c))/(a^2+bc)}+sqrt{(b(c+a))/(b^2+ca)}+sqrt{(c(a+b))/(c^2+ab)}>=2`
Chứng minh giúp mình với!
(Nghi binh 27/09)
Bài 1: Cho a,b,c>0. Chứng minh rằng \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
Bài 2: Cho a,b,c>0. Chứng minh rằng: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\ge16\)
Mình thấy hai bài trên phải vận dụng linh hoạt các hđt và các bđt đã biết.
Bonus thêm bài: Cho a,b,c>0. Chứng minh rằng:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge2\)
Bài này khó hơn cả vì bđt đã biết cần dùng nó khá khó nhớ.
Chứng minh BĐT :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)(a,b,c>0)
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
Chứng minh BĐT : a^3 + b^3 + c^3 + 2.(1/a + 1/b +1/c ) >= (a+b+c)(ab+bc+ca) Biết a+b+c = 3
Chứng ming BĐT sau: (a+b+c)^2/(ab+bc+ca)>=(c+a)/(b+c)+(b+c)/(a+b)+(a+b)/(c+a)
cho a,b,c>=0, a+b+c=1. chứng minh rằng (a-bc)/(a+bc)+(b-ca)/(b+ca)+(c-ab)/(c+ab)<=3/2
Cho a,b,c thõa mãn a^2+b^2+c^2=3
Chứng minh rằng ab+bc+ca+a+b+c bé hơn hoặc bằng 6
Giúp mình với. Cảm ơn ạ <3
cho \(a,b,c>0,abc=1\).CMR
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
sử dụng bđt bunhia nhé mn
MN giúp e với