Hệ số của x^2 trong biểu thức A=(2x-1)(3x^2-5x+6) là ...
Hệ số của x^2 trong biểu thức A=(2x-1)(3x^2-5x+6) là ?
Hệ số của x2 trong biểu thức A= (2x-1)(3x2-5x+6)
A= (2x-1)(3x2-5x+6) = 6x3- 10x2 +12x-3x2 +5x -6
A = 6x3 -15x2 +17x +6
vậy hệ số của x2 là -15
Thực hiện phép tính (2x-1)(3x2-5x+6). Hệ số của x2 trong biểu thức là
(2x - 1)( 3x^2 - 5x + 6) = 6x^3 - 10x^2 + 12x - 3x^2 + 5x - 6 = 6x^3 - 13x^2 + 17x - 6
Vậy hệ số x^2 là -13
hệ số của x^2 trong biểu thức sau đây (2x-1)(3x^2-5x+6)
=6x3-10x2+ 12x - 3x2 +5x - 6
= 6x3 - 13x2 +17x -6
Vay he so cua x2 la -13
Cho các đơn thức: \(2x^6;\) -\(5x^3\); -\(3x^6\); \(x\)\(^3\); - \(\dfrac{3}{5}x^2\); -\(\dfrac{1}{2}x^2\); 8; -\(3x\). Gọi A là tổng của các đơn thức đã cho.
a) tìm tổng A và sắp xếp các hạng tử để được 1 đa thức.
b) tìm hệ số cao nhất, hệ số tự do và hệ số của \(x^2\) của đa thức thu được
`a,`
`A=2x^6+(-5x^3)+(-3x^6)+x^3+(-3/5x^2)+(-1/2x^2)+8+(-3x)`
`A=2x^6-5x^3-3x^6+x^3-3/5x^2-1/2x^2+8-3x`
`A=(2x^6-3x^6)+(-5x^3+x^3)+(-3/5x^2-1/2x^2)-3x+8`
`A=-x^6-4x^3-1,1x^2-3x+8`
`b,`
Hệ số cao nhất của đa thức: `-1`
Hệ số tự do: `8`
Hệ số của `x^2: -1,1 (-11/10)`
a: A=2x^6-3x^6-5x^3+x^3-3/5x^2-1/2x^2-3x+8
=-x^6-4x^3-11/10x^2-3x+8
b: Hệ số cao nhất là -1
Hệ số tự do là 8
Hệ số của x^2 là -11/10
hệ số của x2 trong bt
A=(2x-1)(3x2-5x+6) là
thu gọn sắp xếp theo lũy thừa giảm dần của biến rồi tìm bậc , tìm hệ số cao nhất , hệ số tự do của mỗi đa thức sau
a, 5x^2 - 7 + 6 x - 8x^3 - x^4 - 2x^2 + 4x^3
b, x^4 + 5 - 8x^3 - 5x^2 +3x^3 - 2x^4
c, -6x^3 + 5 x - 1 + 2x^2 + 6x^3 - 2x +5x^2
d, 5x^4 - 3x^2 + 9 x^3 - 2^4 + 4 + 5x
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Trong các biểu thức sau, biểu thức nào là các phân thức?
\(\dfrac{{3x + 1}}{{2x - 1}}\) ; \(2{x^2} - 5x + 3\) ; \(\dfrac{{x + \sqrt x }}{{3x + 2}}\)
Các phân thức:
\(\dfrac{3x+1}{2x-1};\dfrac{x+\sqrt{x}}{3x+2}\)
BÀI 2: rút gọn biểu thức
a) 2x( 5-3x^2) - 10( 6+x)
b)3(-x+2)-6( 1-x+5x^20)
c) 7x( 2-5x^2+1/2x^3)- 14x( 1-2x^2)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\)
\(=10x-6x^3-60-10x\)
\(=\) \(-6x^3-60\)
a) \(2x\left(5-3x^2\right)-10\left(6+x\right)\\ =2x.5-2x.3x^2-10.6-10.x\\ =10x-6x^3-60-10x\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\\ =-3.x+3.2-6.1+6.x-5.5x^{20}\\ =-3x+6-6+6x-25x^{20}=25x^{20}+3x\)
c) \(7x\left(2-5x^2+\dfrac{1}{2}x^3\right)-14x\left(1-2x^2\right)\\ =7x.2-7x.5x^2+7x.\dfrac{1}{2}x^3-14x.1+14x.2x^2\\ =14x-25x^3+\dfrac{7}{2}x^4-14x+28x^3=3x^2+\dfrac{7}{2}x^4\)
b) \(3\left(-x+2\right)-6\left(1-x+5x^{20}\right)\)
\(=-3x+6-6+6x-30x^{20}\)
\(=3x-30x^{20}\)