Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Anh Thư
Xem chi tiết
Nguyễn mạnh cường
Xem chi tiết
Nguyen Ngoc Anh Nhi
Xem chi tiết

B E A F C M I 1 2 1 N2

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

d) Qua F kẻ đg thẳng // với CE cắt AM tại H

+ HF là đg trung bình của ΔACI

HF=\(\frac{1}{2}\)CI⇒HF=12CI

+ ΔABM cân tại M

=> đg cao ME đồng thới là đg trung tuyến

=> AE = BE

+ Tương tự : AF = CF

+ EF là đg trung bình của ΔABC

=> EF // BC

+ Tứ giác EFCM là hbh

=> MK = FK

+ HF // CE => HF // IK

+ IK là đg trung bình của ΔMHF

\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)

IK=12HFCI=4IK

Khách vãng lai đã xóa
_MinhTrangg
15 tháng 5 2020 lúc 20:46

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

hok tốt!

Khách vãng lai đã xóa
đặng lan
Xem chi tiết
Nguyễn khánh huyề
Xem chi tiết
nhatha_1810
Xem chi tiết
nguyễn an phát
28 tháng 4 2021 lúc 15:30

Ta có:

AM là phân giác của \(\widehat{BAC}\) 

Mà trong tam giác cân đường phân giác xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là cũng là đướng trung tuyến ứng với cạnh đáy

⇒M là trung điểm của BC

⇒MC=MB=\(\dfrac{BC}{2}\)=\(\dfrac{15}{2}\)=7,5

Mặc khác trong một tam giác cân đường trung tuyến ứng với cạnh đáy đồng thời là đường trung trực của cạnh đó

Do đó AM là đường trung trực của đoạn thẳng BC

Áp dụng định lý Py-ta-go cho ΔAMC vuông tại M ta có:

AC2=AM2+MC2

132=AM2+7,52

169=AM2+56,25

hay AM2=169-56,25=112,75

⇒AM=\(\sqrt{112,75}\)\(\approx\)10,6

Vậy AM\(\approx\)10,6

ngân trần kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 20:20

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM

daophanminhtrung
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 22:36

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

daophanminhtrung
Xem chi tiết
Nguyễn Huy Tú
8 tháng 3 2022 lúc 15:39

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

nhjhghyjl
Xem chi tiết
Phạm Thị Mai Anh
13 tháng 7 2020 lúc 20:23

a) Xét tam giác ABD và tam giác HBD có : 
               góc ABD = góc HBD (BD là tia pg)
             góc BAD = góc BHD=90 độ (gt)
                  BD là cạnh chung
=> Tam giác ABD  = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )

b) Xét tam giác DHC có : 
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD 

Khách vãng lai đã xóa