Tìm giá trị lớn nhất của biểu thức B= 15/ (3x-2)2+3
Tìm giá trị lớn nhất của biểu thức sau:
B=15/(3x-2)^2+3
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
tìm giá trị lớn nhất của biểu thức:
A=(2.x+1/3)^4-1
tìm giá trị nhỏ nhất của biểu thức:
B=-(4/9.x-2?15)^2+3
bài 3
tìm giá trị lớn nhất của biểu thức A = 11x - 10x - x^2
tìm giá trị nhỏ nhất của biểu thức B = X^2 + 3X + 7
B=\(x^2+3x+7\)
=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) (Với mọi x)
=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) (Với mọi x )
Dấu "='' xảy ra <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)
Vậy min B bằng 19/4 <=>x=-3/2
Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất nếu có của các biểu thức sau
a) | y - 1 | + 7
b) 2017 - | x - 3 |
c) | 3x - 9 | - 15
d) | x - 5 | + | y + 2 | - 3
a)ta có:/y-1/>=0 với mọi y
/y-1/+7>=7 với mọi y
dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1
vậy MIN của biểu thức là 7 tại y=1
Tìm giá trị lớn nhất của biểu thức: B=\(\dfrac{x^2+15}{x^2+3}\)
\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Do \(x^2+3\ge3;\forall x\)
\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)
\(\Rightarrow B\le1+4=5\)
Vậy \(B_{max}=5\) khi \(x=0\)
TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC B=x^2+15/x^2+3
Ta có : \(B=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}.\)Do \(x^2\ge0\)với mọi x nên \(x^2+3\ge3\Rightarrow\frac{12}{x^2+3}\le4\Rightarrow\frac{12}{x^2+3}+1\le4+1\)hay \(B\le5.\)Vậy \(maxB=37\)đạt được khi \(x=0.\)