tìm X để phân thức sau xác định: \(B=\frac{\sqrt{1-2X}}{\sqrt{2X-X^2}}\)
Cho biểu thức: A=\(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\\ \)
a)Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c)Tìm một giá trị của x để A<2
tìm x để các căn thức sau xác định
\(\frac{2x^2}{\sqrt{1-2x}}\)
Để biểu thức xác định thì
\(1-2x>0\Rightarrow-2x>-1\Rightarrow x< \frac{1}{2}\)
\(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a) Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c) Tìm giá trị của x để A < 2
a) A xác định \(\Leftrightarrow\hept{\begin{cases}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\\x+\sqrt{x^2-2x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 0\\x\ge2\end{cases}}\)
b) \(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}=\frac{\left(x^2+x^2-2x+2x\sqrt{x^2-2x}\right)-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
c) \(A< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\Leftrightarrow x^2-2x< 1\Leftrightarrow x^2-2x-1< 0\Leftrightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)
Kết hợp với điều kiện A xác định được : \(2\le x\le1+\sqrt{2}\)
Vậy \(A< 2\Leftrightarrow2\le x\le1+\sqrt{2}\)
tìm x để các căn thức sau xác định
\(\frac{2x^2}{\sqrt{1-2x}}\)
Căn thức đã cho xác định khi
1-2x>0
<=>2x<1
<=>x<1/2
Vậy với x<1/2 thì căn thức đã cho xác định
TÌM X ĐỂ PHÂN THỨC SAU ĐK XÁC ĐỊNH \(A=\sqrt{X\cdot\sqrt{X^2-2X+1}}\)
1. Cho \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
a) Tìm ĐK xác định của A
B) Rút gọn
2. Cho \(B=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a)Tìm ĐKXĐ của B
b)Rút gọn
c)Tìm x để A<2
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
Tìm x để biểu thức sau xác định:
a) \(\sqrt{\left(x+2\right).\left(x-1\right)}\)
b) \(\sqrt{\dfrac{x-3}{2x-1}}\)
c) \(\sqrt{-x^2+2x-1^{ }}\)
a) Biểu thức xác định `<=> (x+2)(x-1) >=0 <=>` \(\left\{{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)
b) Biểu thức xác định `<=> (x-3)/(2x-1) >= 0 <=>` \(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{1}{2}\end{matrix}\right.\)
c) Biểu thức xác định `<=> -x^2+2x-1 >= 0 <=> -(x-1)^2 >= 0 <=> x =1`
a) Biểu thức xác định `<=> (x+2)(x-1) >= 0 <=>` \(\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)
b) Biểu thức xác định `<=> (x-3)/(2x-1) >=0 <=>` \(\left[{}\begin{matrix}x\ge0\\x< \dfrac{1}{2}\end{matrix}\right.\)
c) Biểu thức xác định `<=> -x^2+2x-1>=0 <=> -(x-1)^2 >=0 <=> x=1`
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs