Giải các bất phương trình sau :
\(\left|5-8x\right|\le11\)
Giải các bất phương trình sau:
a) \(\left|5-8x\right|\le11\)
b) \(\left|5-8x\right|\ge x+2\)
c) \(\left|x+2\right|+\left|1-x\right|\ge x+2\)
giải các bất phương trình sau: \(\left|2x-3\right|>5\)
Tham khảo tại đây nhé : https://hoc247.net/hoi-dap/toan-8/giai-bat-phuong-trinh-2x-3-5-faq206164.html
Ta có: |2x-3|>5
=>2x-3>5 hoặc 2x-3<-5
=>x>4 hoặc x<-1
giải các bất phương trình sau:
4) \(\left|2x-3\right|>5\) 5) \(\left|1-2x\right|\le4\) 6) \(\left|3x+1\right|>x-2\)
4: =>2x-3>5 hoặc 2x-3<-5
=>x>4 hoặc x<-1
5: =>-4<=2x-1<=4
=>-3/2<=x<=5/2
Giải bất phương trình sau :
\(\log_x\left(5x^2-8x+3\right)>2\)
Bất phương trình tương đương với :
\(\begin{cases}x>1\\5x^2-8x+3>x^2\end{cases}\) hoặc 0<x<1 và \(5x^2-8x+3\)<\(x^2\)
Hệ thứ nhất cho nghiệm \(x>\frac{3}{2}\)
Hệ thứ hai cho nghiệm \(\frac{1}{2}\)<x<\(\frac{3}{5}\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
giải các bất phương trình sau:
1) \(\left|2x-3\right|>5\) 2) \(\left|1-2x\right|\le4\) 3) \(\left|3x+1\right|>x-2\)
1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
2: \(\Leftrightarrow-4< =2x-1< =4\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)
Giải các bất phương trình sau:
1. \(\left|x-2\right|+\left|x-1\right|\ge5-x\)
2. \(x^4-x^2+8x-16=0\)
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
Câu b còn 1 cách giải nữa:
Với \(x=0\) không phải nghiệm
Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)
Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)
Phương trình trở thành:
\(\sqrt{t^2+12}+t=6\)
\(\Leftrightarrow\sqrt{t^2+12}=6-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)
\(\Rightarrow t=2\)
\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)
\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)
\(\Rightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
Giải bất phương trình sau:
\(a,\frac{3x-5}{2}\ge5x\)
\(b,x\left(2+x\right)-x^2+8x< 5x+20\)
a) Ta có: \(\frac{3x-5}{2}\ge5x\)
\(\Leftrightarrow3x-5\ge10x\)
\(\Leftrightarrow3x-10x\ge5\)
\(\Leftrightarrow-7x\ge5\)
\(\Leftrightarrow x\le-\frac{5}{7}\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)
b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)
\(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)
\(\Leftrightarrow5x< 20\)
\(\Leftrightarrow x< 4\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)
a) (3x - 5)/2 >= 5x
<=> 3x - 5 >= 10x
<=> -5 >= 10x - 3x
<=> -5 >= 7x
<=> x =< -5/7
b) x(2 + x) - x^2 + 8x < 5x + 20
<=> 2x + x^2 - x^2 + 8x < 5x + 20
<=> 10x < 5x + 20
<=> 10x - 5x < 20
<=> 5x < 20
<=> x < 4