Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quangduy
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
POP POP
28 tháng 1 2022 lúc 17:49

Tham khảo tại đây nhé : https://hoc247.net/hoi-dap/toan-8/giai-bat-phuong-trinh-2x-3-5-faq206164.html

Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 20:19

Ta có: |2x-3|>5

=>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

Mot So
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 21:47

4: =>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

5: =>-4<=2x-1<=4

=>-3/2<=x<=5/2

Trương Việt Bình
Xem chi tiết
Nguyễn Trọng Nghĩa
30 tháng 3 2016 lúc 9:38

Bất phương trình tương đương với :

\(\begin{cases}x>1\\5x^2-8x+3>x^2\end{cases}\) hoặc 0<x<1 và \(5x^2-8x+3\)<\(x^2\)

Hệ thứ nhất cho nghiệm \(x>\frac{3}{2}\)

Hệ thứ hai cho nghiệm \(\frac{1}{2}\)<x<\(\frac{3}{5}\)

 

Đạt Kien
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 20:16

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)

Thanh Hoàng Thanh
28 tháng 1 2022 lúc 20:24

undefinedundefinedundefined

Nguyễn Khoa Nguyên
Xem chi tiết
Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

bui tri dung
Xem chi tiết
Tạ Đức Hoàng Anh
22 tháng 3 2020 lúc 20:21

a) Ta có: \(\frac{3x-5}{2}\ge5x\)

         \(\Leftrightarrow3x-5\ge10x\)

         \(\Leftrightarrow3x-10x\ge5\)

         \(\Leftrightarrow-7x\ge5\)

         \(\Leftrightarrow x\le-\frac{5}{7}\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)

b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)

       \(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)

       \(\Leftrightarrow5x< 20\)

       \(\Leftrightarrow x< 4\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
24 tháng 3 2020 lúc 22:51

a) (3x - 5)/2 >= 5x

<=> 3x - 5 >= 10x

<=> -5 >= 10x - 3x

<=> -5 >= 7x

<=> x =< -5/7

b) x(2 + x) - x^2 + 8x < 5x + 20

<=> 2x + x^2 - x^2 + 8x < 5x + 20

<=> 10x < 5x + 20

<=> 10x - 5x < 20

<=> 5x < 20

<=> x < 4

Khách vãng lai đã xóa